Odgovor:
Obrazloženje:
Kako astronaut pluta u prostoru, nema sile koja djeluje na sustav. Dakle, ukupni zamah je sačuvan.
Voda istječe iz obrnutog koničnog spremnika brzinom od 10.000 cm3 / min u isto vrijeme kada se voda pumpa u spremnik konstantnom brzinom Ako je spremnik visine 6m, a promjer na vrhu 4 m i ako se razina vode povećava brzinom od 20 cm / min kada je visina vode 2 m, kako ćete naći brzinu kojom se voda pumpa u spremnik?
Neka je V volumen vode u spremniku, u cm ^ 3; neka je h dubina / visina vode, u cm; i neka je r polumjer površine vode (na vrhu), u cm. Budući da je spremnik obrnuti konus, tako je i masa vode. Budući da je spremnik visine 6 m i radijusa na vrhu 2 m, slični trokuti impliciraju da frak {h} {r} = frak {6} {2} = 3 tako da je h = 3r. Volumen obrnutog konusa vode je tada V = frak {1} {3} pi r ^ {2} h = pi r ^ {3}. Sada razlikujte obje strane s obzirom na vrijeme t (u minutama) da biste dobili frac {dV} {dt} = 3 pi r ^ {2} cdot frac {dr} {dt} (pravilo lanca se koristi u ovom korak). Ako je V_ {i} volumen vode koja je upumpana, t
Astronaut mase 90 kg pluta u svemiru. Ako astronaut baci predmet s masom od 3 kg brzinom od 2 m / s, koliko će se njegova brzina promijeniti?
Podaci: - Masa astronauta = m_1 = 90kg Masa objekta = m_2 = 3kg Brzina objekta = v_2 = 2m / s Brzina astronauta = v_1 = ?? Sol: - Zamah astronauta trebao bi biti jednak zamahu objekta. Moment astronaut = Momentum objekta implicira m_1v_1 = m_2v_2 podrazumijeva v_1 = (m_2v_2) / m_1 podrazumijeva v_1 = (3 * 2) /90=6/90=2/30=0.067 m / s podrazumijeva v_1 = 0.067m / s
Superheroj se lansira s vrha zgrade s brzinom od 7,3 m / s pod kutom od 25 ° iznad horizontale. Ako je zgrada visoka 17 m, koliko daleko će putovati vodoravno prije nego dođe do tla? Koja je njegova konačna brzina?
Dijagram ovoga bi izgledao ovako: Ono što bih učinio je popis onoga što znam. Uzet ćemo negativan prikaz i ostaviti pozitivan. h = "17 m" vecv_i = "7,3 m / s" veca_x = 0 vecg = - "9,8 m / s" ^ 2 Deltavecy =? Deltavecx =? vecv_f =? PRVI DIO: UZRAĆENJE Ono što bih ja učinio je da nađem gdje je vrh odrediti Deltavecy, a onda radim u scenariju slobodnog pada. Napominjemo da je na vrhu, vecv_f = 0 jer osoba mijenja smjer prevladavanjem gravitacije u smanjenju vertikalne komponente brzine kroz nulu iu negativne. Jedna jednadžba koja uključuje vecv_i, vecv_f i vecg je: matbf (vecv_ (fy) ^ 2 = vecv_ (