Odgovor:
Pročitajte objašnjenje.
Obrazloženje:
Nadmorska visina trokuta je okomiti segment od vrha trokuta do suprotne strane.
Ortocentar trokuta je sjecište triju visina trokuta.
Izgradite trokut
vrhovi
Promatrajte to
Ovaj kut je veći od
Ako je trokut an tupi trokut, Orthocenter se nalazi izvan trokuta.
izgraditi visine kroz vrhove trokuta kao što je prikazano u nastavku:
Sva tri visine sastaju se na mjestu koje se naziva orthocenter.
Budući da je trokut tup, orthocenter laži izvan trokuta.
Primijetite da je orthocenter ima
Nadam se da pomaže.
Što je ortocentar trokuta s kutovima u (1, 2), (5, 6) i (4, 6) #?
Ortocentar trokuta je: (1,9) Neka je trokutasti ABC trokut s kutovima na A (1,2), B (5,6) iC (4,6) Let, bar (AL), bar (BM) i bar (CN) su visine na bočnoj traci (BC), traka (AC) i traka (AB). Neka je (x, y) sjecište triju visina. Nagib šipke (AB) = (6-2) / (5-1) = 1 => nagib šipke (CN) = - 1 [:. visina] i traka (CN) prolazi kroz C (4,6) Dakle, equn. bar (CN) je: y-6 = -1 (x-4), tj. boja (crvena) (x + y = 10 .... do (1) Sada, nagib bara (AC) = (6-2) ) / (4-1) = 4/3 => nagib bara (BM) = - 3/4 [:. Visina] i bar (BM) prolazi kroz B (5,6) Dakle, ekvivalent bar (BM) ) je: y-6 = -3 / 4 (x-5) => 4y-24 = -3x + 15 tj. boja (
Što je ortocentar trokuta s kutovima u (1, 3), (5, 7) i (2, 3) #?
Ortocentar trokuta ABC je H (5,0) Neka je trokut ABC s uglovima na A (1,3), B (5,7) i C (2,3). tako, nagib "linije" (AB) = (7-3) / (5-1) = 4/4 = 1 Let, bar (CN) _ | _bar (AB):. Nagib "linije" CN = -1 / 1 = -1, i prolazi kroz C (2,3). : .Equn. "line" CN je: y-3 = -1 (x-2) => y-3 = -x + 2 tj. x + y = 5 ... do (1) Sada, nagib "linije" (BC) = (7-3) / (5-2) = 4/3 Let, bar (AM) _ | _bar (BC):. Nagib "linije" AM = -1 / (4/3) = - 3/4, i prolazi kroz A (1,3). : .Equn. "line" AM, je: y-3 = -3 / 4 (x-1) => 4y-12 = -3x + 3, odnosno 3x + 4y = 15 ... do (2) sjecište "
Što je ortocentar trokuta s kutovima u (1, 3), (5, 7) i (9, 8) #?
(-10 / 3,61 / 3) Ponavljanje točaka: A (1,3) B (5,7) C (9,8) Ortocentar trokuta je točka u kojoj je linija visina relativno na svaku stranu (prolazeći kroz suprotni vrh) susreću se. Dakle, trebamo samo jednadžbe od 2 retka. Nagib linije je k = (Delta y) / (Delta x), a nagib pravca okomit na prvi je p = -1 / k (kada je k! = 0). AB-> k_1 = (7-3) / (5-1) = 4/4 = 1 => p_1 = -1 BC-> k = (8-7) / (9-5) = 1/4 => p_2 = -4 Jednadžba crte (koja prolazi kroz C) u kojoj se postavlja visina okomita na AB (y-y_C) = p (x-x_C) => (y-8) = - 1 * (x-9) => y = -x + 9 + 8 => y = -x + 17 [1] Jednadžba linije (koja prolazi kr