Odgovor:
Pokušao sam ovo:
Obrazloženje:
Razmotrite dijagram:
možemo koristiti Pythgoras teorem primijenjen na plavi trokut koji daje:
Manipuliranje:
Odgovor:
Obrazloženje:
Možete koristiti trigonometriju da biste pronašli visinu (jednaku visini) trokuta.
U jednakostraničnom trokutu, sve su strane jednake i svi su kutovi jednaki
Visina je strana suprotan
Duljina svake strane jednakostraničnog trokuta povećana je za 5 inča, tako da je perimetar sada 60 inča. Kako pišete i rješavate jednadžbu kako biste pronašli izvornu duljinu svake strane jednakostraničnog trokuta?
Našao sam: 15 "u" Nazovimo izvorne duljine x: Povećanje od 5 "in" će nam dati: (x + 5) + (x + 5) + (x + 5) = 60 3 (x + 5) = 60 preraspodjela: x + 5 = 60/3 x + 5 = 20 x = 20-5 x = 15 "u"
Perimetar trokuta je 24 inča. Najduža strana od 4 inča je duža od najkraće strane, a najkraća strana je tri četvrtine dužine srednje strane. Kako ćete pronaći dužinu svake strane trokuta?
Ovaj problem je jednostavno nemoguć. Ako je najduža strana 4 inča, ne postoji način da perimetar trokuta može biti 24 inča. Kažete da je 4 + (nešto manje od 4) + (nešto manje od 4) = 24, što je nemoguće.
Opseg trokuta je 29 mm. Duljina prve strane je dvostruka dužina druge strane. Duljina treće strane je 5 više od duljine druge strane. Kako ste pronašli duljine stranice trokuta?
S_1 = 12 s_2 = 6 s_3 = 11 Perimetar trokuta je zbroj duljina svih njegovih strana. U ovom slučaju, daje se da je perimetar 29mm. Dakle, za ovaj slučaj: s_1 + s_2 + s_3 = 29 Tako rješavajući za duljinu strana, prevodimo izjave u danu u oblik jednadžbe. "Duljina prve strane je dvostruka dužina druge strane" Kako bismo to riješili, dodijelili smo slučajnu varijablu ili s_1 ili s_2. Za ovaj primjer, ja bih pustiti x biti duljina druge strane kako bi se izbjeglo frakcija u mojoj jednadžbi. tako da znamo da: s_1 = 2s_2 ali budući da smo neka s_2 biti x, sada znamo da: s_1 = 2x s_2 = x "Duljina 3. Side je 5 više od