Odgovor:
Obrazloženje:
Pretpostavimo da je u jednakokračan
Tako
Jasno, imamo,
Primjena Pitagorina teorema, imamo,
Duljina jednakokračnog pravokutnog trokuta je 5sqrt2 jedinica. Kolika je duljina hipotenuze?
Hypotenuse = 10 Dobivate duljinu nogu s jedne strane, tako da u osnovi dobivate obje dužine nogu jer jednakokračan pravokutni trokut ima dvije jednake duljine nogu: 5sqrt2 Da biste pronašli hipotenuzu, morate napraviti ^ 2 + b ^ = c ^ 2 a = duljina nogu 1 b = duljina nogu 2 c = hipotenuza (5sqrt2) ^ 2 + (5sqrt2) ^ 2 = c ^ 2 (25 * 2) + (25 * 2) = c ^ 2 50 + 50 = c ^ 2 100 = c ^ 2 sqrt100 = sqrt (c ^ 2) 10 = c hipotenuza = 10
Jedna noga pravokutnog trokuta je 96 inča. Kako pronaći hipotenuzu i drugu nogu ako duljina hipotenuze premašuje 2,5 puta drugu nogu za 4 inča?
Upotrijebite Pitagoru da odredite x = 40 i h = 104 Neka je x druga noga, a zatim hipotenuza h = 5 / 2x +4 I rečeno nam je da prva noga y = 96 Možemo koristiti Pitagorinu jednadžbu x ^ 2 + y ^ 2 = h ^ 2 x ^ 2 + 96 ^ 2 = (5 / 2x + 4) ^ 2 x ^ 2 + 9216 = 25 x ^ 2/4 + 20 x + 16 Promjena redoslijeda daje nam x ^ 2 - 25x ^ 2/4 - 20x +9200 = 0 Pomnožite s po -4 21x ^ 2 + 80x -36800 = 0 Korištenjem kvadratne formule x = (-b + -sqrt (b ^ 2 - 4ac)) / (2a) x = (- (80) + - sqrt (6400 + 3091200)) / (- 42) x = (-80 + -1760) / 42 pa je x = 40 ili x = -1840/42 Možemo zanemariti negativni odgovor s obzirom na stvarni trokut, tako je druga n
Jedna noga pravokutnog trokuta je 96 inča. Kako ste pronašli hipotenuzu i drugu nogu ako duljina hipotenuze premašuje 2 puta drugu nogu za 4 inča?
Hipotenuza 180,5, noge 96 i 88,25 cca. Neka poznata noga bude c_0, hipotenuza je h, višak h iznad 2c kao delta i nepoznata noga, c. Znamo da c ^ 2 + c_0 ^ 2 = h ^ 2 (Pytagoras) također h-2c = delta. Subtituting prema h smo dobili: c ^ 2 + c_0 ^ 2 = (2c + delta) ^ 2. Pojednostavljenje, c ^ 2 + 4 delta c + delta ^ 2-c_0 ^ 2 = 0. Rješavanje za c dobivamo. c = (-4delta pm sqrt (16delta ^ 2-4 (delta ^ 2-c_0 ^ 2))) / 2 Dopuštena su samo pozitivna rješenja c = (2sqrt (4delta ^ 2-delta ^ 2 + c_0 ^ 2) -4delta ) / 2 = sqrt (3delta ^ 2 + c_0 ^ 2) -2delta