Odgovor:
Možete reći da je to kvadrinomija, ali to samo znači da ima
Ako su ti pojmovi u jednoj varijabli najvišeg stupnja
Obrazloženje:
Zbroj prvih četiri termina GP-a je 30, a od zadnja četiri termina 960. Ako prvi i posljednji mandat liječnika opće prakse je 2 odnosno 512, pronađite zajednički omjer.
2root (3) 2. Pretpostavimo da je uobičajeni odnos (cr) dotičnog GP-a r i n ^ (th) pojam je posljednji pojam. S obzirom na to, prvi mandat liječnika opće prakse je 2.: "GP je" {2,2r, 2r ^ 2,2r ^ 3, .., 2r ^ (n-4), 2r ^ (n-3) S, 2R ^ (n-2), 2R ^ (n-1)}. S obzirom, 2 + 2r + 2r ^ 2 + 2r ^ 3 = 30 ... (zvijezda ^ 1), i, 2r ^ (n-4) + 2r ^ (n-3) + 2r ^ (n-2) + 2r ^ (n-1) = 960 ... (star ^ 2). Također znamo da je zadnji termin 512.:. r ^ (n-1) = 512 .................... (star ^ 3). Sada, (zvijezda ^ 2) rArr r ^ (n-4) (2 + 2r + 2r ^ 2 + 2r ^ 3) = 960, tj., (R ^ (n-1)) / r ^ 3 (2 + 2r) + 2r ^ 2 + 2r ^ 3) = 960. :. (512) / r
Zbroj četiri uzastopna termina geometrijskog slijeda je 30. Ako je AM prvog i zadnjeg termina 9. Nađi zajednički omjer.
Neka prvi izraz i uobičajeni omjer GP su a i r. Do prvog uvjeta a + ar + ar ^ 2 + ar ^ 3 = 30 ... (1) Po drugom uvjetu a + ar ^ 3 = 2 * 9 .... (2) Oduzimanje (2) od (1) ar + ar ^ 2 = 12 .... (3) Dijeljenje (2) s (3) (1 + r ^ 3) / (r + r ^ 2) = 18/12 = 3/2 => ((1+ r) (1-r + r ^ 2)) / (r (1 + r)) = 3/2 => 2-2r + 2r ^ 2 = 3r => 2r ^ 2-5r + 2 = 0 => 2r ^ 2-4r-r + 2 = 0 => 2r (r-2) -1 (r-2) = 0 => (r-2) (2r-1) = 0 Tako je r = 2or1 / 2
Kada je polinom podijeljen s (x + 2), ostatak je -19. Kada je isti polinom podijeljen s (x-1), ostatak je 2, kako odrediti ostatak kada je polinom podijeljen s (x + 2) (x-1)?
Znamo da je f (1) = 2 i f (-2) = - 19 iz teorije ostatka Sada nalazimo ostatak polinoma f (x) kada ga podijelimo s (x-1) (x + 2). oblik Ax + B, jer je ostatak nakon podjele kvadratnim. Sada možemo pomnožiti djelitelj puta količnik Q ... f (x) = Q (x-1) (x + 2) + Ax + B Dalje, umetnuti 1 i -2 za x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Rješavajući ove dvije jednadžbe, dobivamo A = 7 i B = -5 Ostatak = Ax + B = 7x-5