Odgovor:
Obrazloženje:
Moramo uzeti sinus ili kosinus s obje strane. Savjet: odaberite kosinus. Vjerojatno ovdje nije važno, ali to je dobro pravilo.
Tako ćemo se suočiti s tim
To je kosinus kuta čiji je sinus
Sada ćemo napraviti problem
Imamo
Ček:
Ovaj put ćemo uzeti sines.
Jasno je da pozitivna glavna vrijednost arccos dovodi do pozitivnog sinusa.
Što je (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt) (3) sqrt (5))?
2/7 Primamo, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5) -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) (2sqrt3 + sqrt5) (2sqrt3 + sqrt5) / ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (poništi (2sqrt15) -5 + 2 * 3kkazati (-sqrt15) - otkazati (2sqrt15) -5 + 2 * 3 + otkazati (sqrt15)) / (12-5) = ( Imajte na umu da, ako su u nazivnicima (sqrt3 + sqrt (3 + sqrt5)) i (sqrt3 + sqrt (3-sqrt5)), odgovor će biti promijenjen.
Kako riješiti arcsin (x) + arcsin (2x) = pi / 3?
X = sqrt ((- 7 + sqrt (73)) / 16) arcsin (x) + arcsin (2x) = pi / 3 Počnite tako što ćete alpha = arcsin (x) "" i "" beta = arcsin (2x) boje (crna) alfa i boja (crna) beta zapravo predstavljaju samo kutove. Tako da imamo: alfa + beta = pi / 3 => sin (alpha) = x cos (alfa) = sqrt (1-sin ^ 2 (alfa)) = sqrt (1-x ^ 2) Slično, sin (beta ) = 2x cos (beta) = sqrt (1-sin ^ 2 (beta)) = sqrt (1- (2x) ^ 2) = sqrt (1-4x ^ 2) boja (bijela) Zatim razmotrite alfa + beta = pi / 3 => cos (alfa + beta) = cos (pi / 3) => cos (alfa) cos (beta) -sin (alfa) sin (beta) = 1/2 => sqrt (1-x ^ 2) ) * sqrt (1-4x ^ 2) -
Kako pojednostaviti grijeh (arccos (sqrt (2) / 2) -arcsin (2x))?
Dobivam grijeh (arccos (sqrt {2} / 2) - arcsin (2x)) = {2x: sqrt {1 - 4x ^ 2}} / {sqrt {2}} Imamo sinus razlike, stoga jedna će biti formula kuta razlike, sin (ab) = sin a cos b - cos sin b sin (arccos (sqrt {2} / 2) - arcsin (2x)) = sin arccos (sqrt {2} / 2) cos arcsin (2x) + cos arccos (sqrt {2} / 2) sin arcsin (2x) Pa, sinus arcsine i kosinus arccosine su jednostavni, ali što je s ostalima? Pa prepoznamo arccos (sqrt {2} / 2) kao što je 45 ^ circ, pa grijeh arccos (sqrt {2} / 2) = pm sqrt {2} / 2 ću ostaviti pm tamo; Pokušavam slijediti konvenciju da su arccos svi inverzni kosinusi, nasuprot Arccosu, glavnoj vrijednosti