Odgovor:
Obrazloženje:
Vektor koji tražimo je
Koristeći tu činjenicu možemo napraviti sustav jednadžbi:
#vecn * (i + 0j + k) = 0 #
# (Ai + Bj + ck) (i + 0j + k) = 0 #
# a + c = 0 #
#vecn * (i + 2j + 2k) = 0 #
# (ai + bj + ck) * (i + 2j + 2k) = 0 #
# a + 2b + 2c = 0 #
Sada imamo
# a + c = a + 2b + 2c #
# 0 = 2b + c #
#tako je + c = 2b + c #
#a = 2b #
# a / 2 = b #
Sada to znamo
#ai + a / 2j-ak #
Konačno, ovo moramo učiniti jediničnim vektorom, što znači da svaki koeficijent vektora treba podijeliti njegovom veličinom. Magnituda je:
# | Vecn | = sqrt (a ^ 2 + (a / 2) ^ 2 + (- a) ^ 2) *
# | Vecn | = sqrt (9 / 4a ^ 2) *
# | Vecn | = 3 / 2a #
Naš jedinični vektor je:
#vecn = a / (3 / 2a) i + (a / 2) / (3 / 2a) j + (-a) / (3 / 2a) k #
#vecn = 2 / 3i + 1 / 3j -2 / 3k #
Konačni odgovor
Što je jedinstveni vektor koji je normalan na ravninu koja sadrži <1,1,1> i <2,0, -1>?
Jedinični vektor je = 1 / sqrt14 ,3 -1,3, -2〉 Morate napraviti poprečni proizvod dvaju vektora da dobijemo vektor okomit na ravninu: križni proizvod je deteminant od ((veci, vecj, veck), (1,1,1), (2,0, -1)) ve = veci (-1) -vecj (-1-2) + veck (-2) = 1,3 - 1,3, -2 By Provjeravamo tako da radimo dot proizvode. ,3 -1,3, -2〉. 〈1,1,1〉 = - 1 + 3-2 = 0 ,3 -1,3, -2〉., 2,0, -1〉 = - 2 + 0 + 2 = 0 Budući da su točkice proizvoda = 0, zaključujemo da je vektor okomit na ravninu. Cvecv = sqrt (1 + 9 + 4) = sqrt14 Jedinični vektor je hatv = vecv / ( vecv ) = 1 / sqrt14 ,3 -1,3, -2
Što je jedinstveni vektor koji je normalan na ravninu koja sadrži (2i - 3 j + k) i (2i + j - 3k)?
Vecu = <(sqrt (3)) / 3, (sqrt (3)) / 3, (sqrt (3)) / 3> Vektor koji je normalan (ortogonalan, okomit) na ravninu koja sadrži dva vektora je također normalan na oba navedena vektora. Možemo pronaći normalni vektor uzimajući križni proizvod dva zadana vektora. Zatim možemo pronaći jedinični vektor u istom smjeru kao i taj vektor. Prvo, napišite svaki vektor u vektorskom obliku: veca = <2, -3,1> vecb = <2,1, -3> Prekriženi proizvod, vecaxxvecb nalazi se: vecaxxvecb = abs ((veci, vecj, veck), (2, -3,1), (2,1, -3)) Za i komponentu imamo: (-3 * -3) - (1 * 1) = 9- (1) = 8 Za j komponenta, imamo: - [(2 * -3) - (2
Što je jedinstveni vektor koji je normalan na ravninu koja sadrži (- 3 i + j -k) i # (- 2i - j - k)?
Jedinični vektor je = <- 2 / sqrt30, -1 / sqrt30,5 / sqrt30> Izračunamo vektor koji je okomit na druga dva vektora radeći križni proizvod, Neka veca = <- 3,1, -1> vecb = <- 2, -1, -1> vecc = | (hati, hatj, hatk), (- 3,1, -1), (- 2, -1, -1) | = Hati | (1, 1), (- 1, 1) | -hatj | (-3, 1), (- 2, 1) | + hatk | (-3,1), (- 2 , 1) | = hati (-2) -hatj (1) + hatk (5) = <- 2, -1,5> Verifikacija veca.vecc = <- 3,1, -1>. <- 2, -1,5> = 6-1-5 = 0 vecb.vecc = <- 2, -1, -1>. <- 2, -1,5> = 4 + 1-5 = 0 Modul vecc = || vecc || = || <-2, -1,5> || = sqrt (4 + 1 + 25) = sqrt30 Jedinica vektor