Znamo da ako
Dakle, ono što nam treba je samo pronaći križni proizvod danih dvaju vektora.
Tako,
Dakle, jedinični vektor je
Što je jedinični vektor koji je ortogonalan ravnini koja sadrži <0, 4, 4> i <1, 1, 1>?
Odgovor je = / 0,1 / sqrt2, -1 / sqrt2 that Vektor koji je okomit na 2 druga vektora dat je križnim proizvodom. ,4 0,4,4 〈x 〈1,1,1〉 = | (hati, hatj, hatk), (0,4, 4), (1,1,1) | = hati (0) -hatj (-4) + hatk (-4) =, 0,4, -4〉 Verifikacija pomoću točkastih proizvoda ,4 0,4,4 〈. 〈0,4, -4〉 = 0 + 16-16 = 0 ,1 1,1,1 〈. 〈0,4, -4〉 = 0 + 4-4 = 0 Modul, 0,4, -4〉 je = 〈0,4, - 4〉 = sqrt (0 + 16 + 16) = sqrt32 = 4sqrt2 Jedinica vektora dobiva se dijeljenjem vektora s modulom = 1 / (4sqrt2), 0,4, -4〉 = 〈0,1 / sqrt2, -1 / sqrt2>
Što je jedinični vektor koji je ortogonalan ravnini koja sadrži (20j + 31k) i (32i-38j-12k)?
Jedinični vektor je == 1 / 1507.8 <938,992, -640> Vektor koji je ortogonalan na 2 vectros u ravnini izračunat je s odrednicom | (veci, vecj, veck), (d, e, f), (g, h, i) | gdje 〈d, e, f〉 i, g, h, i〉 su 2 vektora Ovdje imamo veca = 0 0,20,31〉 i vecb =, 32, -38, -12〉 Stoga, | (veci, vecj, veck), (0,20,31), (32, -38, -12) | = Veci | (20,31), (-38, -12) | -vecj | (0,31), (32, -12) | + Veck | (0,20), (32, -38) | = veci (20 * -12 + 38 * 31) -vecj (0 * -12-31 * 32) + veck (0 * -38-32 * 20) = 38 938,992, -640〉 = vecc proizvodi 38 938,992, -640 〈. 0 0,20,31〉 = 938 * 0 + 992 * 20-640 * 31 = 0 38 938,992, -640 〈., 32, -38, -12〉
Što je jedinični vektor koji je ortogonalan ravnini koja sadrži (29i-35j-17k) i (41j + 31k)?
Jedinični vektor je = 1 / 1540,3 38 -388, -899,1189 per Vektor okomit na 2 vektora izračunava se s determinantom (poprečni proizvod) | (veci, vecj, veck), (d, e, f), (g, h, i) | gdje 〈d, e, f〉 i, g, h, i〉 su 2 vektora Ovdje imamo veca =, 29, -35, -17〉 i vecb = 1 0,41,31〉 Dakle, | (veci, vecj, veck), (29, -35, -17), (0,41,31) | = Veci | (-35, -17), (41,31) | -vecj | (29, -17), (0,31) | + Veck | (29, -35), (0,41) | = veci (-35 * 31 + 17 * 41) -vecj (29 * 31 + 17 * 0) + veck (29 * 41 + 35 * 0) = 38 - 388, -899,1189〉 = vecc točkasti proizvodi 8 -388, -899,1189 〈., 29, -35, -17〉 = - 388 * 29 + 899 * 35-17 * 1189 = 0 38 -388, -8