Odgovor:
Stimulus, senzorni neuron, posredni neuron, motorni neuron i defektor organ je ispravan redoslijed općeg refleksnog luka.
Obrazloženje:
Refleksni luk počinje stimulusom. Poticaj mora biti dovoljno jak da pokrene impuls u osjetilnom neuronu.
Senzorni neuron nosi impuls do posrednog neurona.
Posredni neuron nosi impuls do odgovarajućeg motornog neurona.
Motorni neuroni šalju impuls na mišić ili žlijezdu.
Primjer općeg refleksnog luka je ubod igle na prst. Konačna akcija je povlačenje ruke.
Proučavali ste broj ljudi koji čekaju u redu u vašoj banci u petak poslijepodne u 15 sati i već su napravili razdiobu vjerojatnosti za 0, 1, 2, 3 ili 4 osobe u redu. Vjerojatnosti su 0,1, 0,3, 0,4, 0,1 i 0,1. Kolika je vjerojatnost da će u petak popodne u 3 sata biti u redu najviše 3 osobe?
Najviše 3 osobe u redu bi bile. P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) = 0,1 + 0,3 + 0,4 + 0,1 = 0,9 Tako je P (X <= 3) = 0,9. bilo bi lakše koristiti pravilo komplimenta, jer imate jednu vrijednost za koju niste zainteresirani, tako da je možete samo oduzeti od ukupne vjerojatnosti. kao: P (X <= 3) = 1 - P (X> = 4) = 1 - P (X = 4) = 1 - 0.1 = 0.9 Dakle P (X <= 3) = 0.9
Proučavali ste broj ljudi koji čekaju u redu u vašoj banci u petak poslijepodne u 15 sati i već su napravili razdiobu vjerojatnosti za 0, 1, 2, 3 ili 4 osobe u redu. Vjerojatnosti su 0,1, 0,3, 0,4, 0,1 i 0,1. Kolika je vjerojatnost da će u petak poslijepodne u 3 sata biti u redu najmanje 3 osobe?
Ovo je ... ILI situacija. Vi svibanj dodati vjerojatnosti. Uvjeti su ekskluzivni, to jest: ne možete imati 3 i 4 osobe u redu. U redu su 3 osobe ili 4 osobe. Tako dodajte: P (3 ili 4) = P (3) + P (4) = 0,1 + 0,1 = 0,2 Provjerite svoj odgovor (ako imate vremena za vrijeme testa), izračunavanjem suprotne vjerojatnosti: P (<3) = P (0) + P (1) + P (2) = 0,1 + 0,3 + 0,4 = 0,8 I ovaj i vaš odgovor dodaju 1,0, kao što bi trebali.
Proučavali ste broj ljudi koji čekaju u redu u vašoj banci u petak poslijepodne u 15 sati i već su napravili razdiobu vjerojatnosti za 0, 1, 2, 3 ili 4 osobe u redu. Vjerojatnosti su 0,1, 0,3, 0,4, 0,1 i 0,1. Koji je očekivani broj ljudi (u prosjeku) koji čekaju u redu u petak popodne u 15 sati?
Očekivani broj u ovom slučaju može se smatrati ponderiranim prosjekom. Najbolje je to postići zbrajanjem vjerojatnosti danog broja tim brojem. Dakle, u ovom slučaju: 0.1 * 0 + 0.3 * 1 + 0.4 * 2 + 0.1 * 3 + 0.1 * 4 = 1.8