Odgovor:
Pogledaj ispod
Obrazloženje:
Pokazati da cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Malo sam zbunjen ako napravim Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), postat će negativan kao cos (180 ° -teta) = - costheta u drugi kvadrant. Kako mogu dokazati pitanje?
Pogledajte dolje. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Kako dokazati (1 + sinx-cosx) / (1 + cosx + sinx) = tan (x / 2)?
Pogledajte dolje. LHS = (1-cosx + sinx) / (1 + cosx + sinx) = (2sin ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2)) / (2cos ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2) = (2sin (x / 2) [sin (x / 2) + cos (x / 2)]) / (2cos (x / 2) * [ sin (x / 2) + cos (x / 2)]) = tan (x / 2) = RHS
Prirodni broj se piše sa samo 0, 3, 7. Dokazati da savršen kvadrat ne postoji. Kako mogu dokazati ovu tvrdnju?
Odgovor: Svi savršeni kvadrati završavaju s 1, 4, 5, 6, 9, 00 (ili 0000, 000000 itd.) Broj koji završava u 2, boja (crvena) 3, boja (crvena) 7, 8 i samo boja (crvena) 0 nije savršen kvadrat. Ako se prirodni broj sastoji od ove tri znamenke (0, 3, 7), neizbježno je da se broj mora završiti u jednoj od njih. Bilo je kao da ovaj prirodni broj ne može biti savršen kvadrat.