Odgovor:
Obrazloženje:
Dva ugla jednakostraničnog trokuta su na (2,5) i (9,8). Da bismo pronašli duljinu segmenta linije između ove dvije točke, koristit ćemo formula udaljenost (formula izvedena iz Pitagorina teorema).
Formula za razmak bodova
Dakle, s obzirom na bodove
Tako znamo da baza ima duljinu
Sada znamo da je područje trokuta
Konačno, da bismo pronašli duljinu jedne strane, koristit ćemo Pitagorin teorem (
Tako je duljina njegovih strana
Dva ugla jednakokračnog trokuta nalaze se u (1, 2) i (3, 1). Ako je područje trokuta 12, koje su duljine stranica trokuta?
Mjera triju strana su (2.2361, 10.7906, 10.7906) Duljina a = sqrt ((3-1) ^ 2 + (1-2) ^ 2) = sqrt 5 = 2.2361 Površina Delta = 12:. h = (Površina) / (a / 2) = 12 / (2.2361 / 2) = 12 / 1.1181 = 10.7325 strana b = sqrt ((a / 2) ^ 2 + h ^ 2) = sqrt ((1.1181) ^ 2 + (10.7325) ^ 2) b = 10.7906 Budući da je trokut jednakostraničan, treća strana je također = b = 10.7906 Mjera triju strana su (2.2361, 10.7906, 10.7906)
Dva ugla jednakokračnog trokuta nalaze se u (1, 2) i (3, 1). Ako je područje trokuta 2, koje su duljine stranica trokuta?
Pronađite visinu trokuta i koristite Pythagoras. Počnite s podsjećanjem na formulu za visinu trokuta H = (2A) / B. Znamo da je A = 2, tako da se na početak pitanja može odgovoriti pronalaženjem baze. Navedeni kutovi mogu proizvesti jednu stranu, koju ćemo nazvati bazom. Udaljenost između dviju koordinata na ravnini XY daje formula sqrt ((X1-X2) ^ 2 + (Y1-Y2) ^ 2). PlugX1 = 1, X2 = 3, Y1 = 2 i Y2 = 1 za dobivanje sqrt ((- 2) ^ 2 + 1 ^ 2) ili sqrt (5). Budući da ne morate pojednostaviti radikale u radu, ispada da je visina 4 / sqrt (5). Sada moramo pronaći stranu. Uzimajući u obzir da crtanje visine unutar jednakokračnog tro
Dva ugla jednakokračnog trokuta nalaze se u (1, 2) i (9, 7). Ako je područje trokuta 64, koje su duljine stranica trokuta?
Duljine tri strane Delta su boje (plave) (9.434, 14.3645, 14.3645). Duljina a = sqrt ((9-1) ^ 2 + (7-2) ^ 2) = sqrt 89 = 9.434 Površina Delta = 4:. h = (površina) / (a / 2) = 6 4 / (9.434 / 2) = 6 4 / 4.717 = 13.5679 strana b = sqrt ((a / 2) ^ 2 + h ^ 2) = sqrt ((4.717) ^ 2 + (13,5679) ^ 2) b = 14,3645 Budući da je trokut jednakostraničan, treća strana je također = b = 14,3645