Odgovor:
Potvrđeno u nastavku
Obrazloženje:
Pokušavamo to dokazati
Započet ću s lijeve strane i manipulirati njime dok ne bude jednaka desnoj strani:
To je dokaz. Nadam se da je ovo pomoglo!
Provjerite sekx • cscx + cotx = tanx + 2cosx • cscx?
RHS = tanx + 2cosx * cscx = sinx / cosx + (2cosx) / sinx = (sin ^ 2x + 2cos ^ 2x) / (sinx * cosx) = (sin ^ 2x + cos ^ 2x + cos ^ 2x) / (sinx * cosx) = (1 + cos ^ 2x) / (sinx * cosx) = 1 / (sinx * cosx) + (cos ^ 2x) / (sinx * cosx) = cscx * secx + cotx = LHS
Prirodni broj se piše sa samo 0, 3, 7. Dokazati da savršen kvadrat ne postoji. Kako mogu dokazati ovu tvrdnju?
Odgovor: Svi savršeni kvadrati završavaju s 1, 4, 5, 6, 9, 00 (ili 0000, 000000 itd.) Broj koji završava u 2, boja (crvena) 3, boja (crvena) 7, 8 i samo boja (crvena) 0 nije savršen kvadrat. Ako se prirodni broj sastoji od ove tri znamenke (0, 3, 7), neizbježno je da se broj mora završiti u jednoj od njih. Bilo je kao da ovaj prirodni broj ne može biti savršen kvadrat.
Kako mogu dokazati taj identitet? (Cosxcotx-tanx) / cscx = cosx / secx-sinx / Cotx
Identitet bi trebao biti istinit za bilo koji broj x koji izbjegava podjelu na nulu. (cosxcotx-tanx) / cscx = {cos x (cos x / sin x) - sin x / cos x} / (1 / sin x) = cos ^ 2x - sin ^ 2 x / cos x = cos x / (1 / cos x) - sin x / (cos x / sin x) = cosx / secx-sinx / cotx