Odgovor:
#x = 2 #
Obrazloženje:
zvanje #sqrt 49 + 20 sqrt 6 = 5 + 2 sqrt 6 = beta # imamo
# (5 + 2 sqrt 6) ^ 1+ (5- 2 sqrt 6) ^ 1 = 10 #
za
#sqrt (asqrt (asqrt (a … oo))) = 1 # i
# x ^ 2 + x-3 - sqrt (xsqrt (xsqrt (x … oo))) = 1 #
i tako da
# A = x ^ 2-3 #
ali
#sqrt (asqrt (asqrt (a … oo))) = a ^ (1/2 + 1/4 + 1/8 + cdots + 1/2 ^ k + cdots) = a ^ 1 = 1 #
i onda
# 1 = x ^ 2-3 rArr x = 2 #
zatim
# x ^ 2 + x-3 - sqrt (xsqrt (xsqrt (x … oo))) = 1 #
ili
# 1 + 2 - kvart (2sqrt (2sqrt (2 … oo))) = 1 #
zatim #x = 2 #