Dva ugla jednakokračnog trokuta nalaze se u (9, 4) i (3, 8). Ako je područje trokuta 48, koje su duljine stranica trokuta?

Dva ugla jednakokračnog trokuta nalaze se u (9, 4) i (3, 8). Ako je područje trokuta 48, koje su duljine stranica trokuta?
Anonim

Odgovor:

Tri strane trokuta su #color (plava) (6.4031, 15.3305, 15.3305) #

Obrazloženje:

dužina #a = sqrt ((3-9) ^ 2 + (8-4) ^ 2) = sqrt41 = 6,4031 #

Područje od #Delta = 48 #

#:. h = (Površina) / (a / 2) = 48 / (6.4031 / 2) = 48 / 3.2016 = 14.9925 #

#side b = sqrt ((a / 2) ^ 2 + h ^ 2) = sqrt ((3.2016) ^ 2 + (14.9925) ^ 2) #

#b = 15.3305 #

Budući da je trokut jednakostručan, također je i treća strana # = b = 15.3305 #