Odgovor:
Postoji mnogo različitih odgovora.
Obrazloženje:
Možemo modelirati sljedeće.
pustiti
Kao što možete vidjeti, brojevi postaju sve veći i veći
ili
ALI, neki matematičari se o tome ne slažu.
Zapravo, neki misle da prema Riemannovoj zeta funkciji,
Ne znam mnogo o tome, ali evo nekih izvora i videozapisa za ovu tvrdnju:
blogs.scientificamerican.com/roots-of-unity/does-123-really-equal-112/
Zapravo, tu je i članak o ovome, ali izgleda mi prilično komplicirano. U svakom slučaju, ovdje je link za to.
math.arizona.edu/~cais/Papers/Expos/div.pdf
Odgovor:
Ideje o
Obrazloženje:
U matematici više razine postoji specifična funkcija koja je vrlo blisko povezana s tom sumom, to se zove:
Gdje
Vidimo to
No, tu su i neke vrlo poznate druge serije iz matematike:
No, vrlo je zanimljivo vidjeti kako
No to dobro zna
Nekoliko zanimljivih rješenja riemanove zeta funkcije
"Vrijednosti pronađene na
Zbroj dvaju prirodnih brojeva je sedam, a zbroj njihovih kvadrata je dvadeset pet. Što je proizvod tih dvaju brojeva?
12 S obzirom: x + y = 7 x ^ 2 + y ^ 2 = 25 Onda 49 = 7 ^ 2 = (x + y) ^ 2 = x ^ 2 + y ^ 2 + 2xy = 25 + 2xy Oduzmi 25 s oba kraja dobiti: 2xy = 49-25 = 24 Podijeliti obje strane za 2 da bi dobio: xy = 24/2 = 12 #
Poznavanje formule za zbroj N cijelih brojeva a) što je zbroj prvih N uzastopnih kvadratnih brojeva, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1) ) ^ 2 + N ^ 2? b) Zbroj prvih N uzastopnih prirodnih brojeva kocke Sigma_ (k = 1) ^ N k ^ 3?
Za S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n) ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Imamo sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 rješavanje za sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3/3 (n + 1) / 3-sum_ {i = 0} ^ ni, ali sum_ {i = 0} ^ ni = ((n + 1) n) / 2 tako sum_ {i = 0} ^ ni ^ 2 = (n) +1) ^ 3 / 3- (n +
Winnie preskače sa 7s počevši od 7 i piše ukupno 2.000 brojeva, Grogg preskoči broj od 7 počevši od 11 i piše ukupno 2.000 brojeva Koja je razlika između zbroja svih Groggovih brojeva i zbroja svih Winniejevih brojeva?
Pogledajte postupak rješavanja u nastavku: Razlika između Winnieja i Groggovog prvog broja je: 11 - 7 = 4 Oboje su napisali 2000 brojeva Oba su preskočila brojeći se istim iznosom - 7s Dakle, razlika između svakog broja koji je Winnie napisao i svaki broj Grogg Također je 4 Stoga je razlika u zbroju brojeva: 2000 xx 4 = boja (crvena) (8000)