Odgovor:
Postoje dva koraka: (1) pronalaženje križnog proizvoda vektora, (2) normaliziranje dobivenog vektora. U ovom slučaju, odgovor je:
Obrazloženje:
Križni proizvod dvaju vektora daje vektor koji je ortogonalan (pod pravim kutom) na oba.
Križni proizvod dvaju vektora
Prvi korak je pronalaženje poprečnog proizvoda:
Ovaj vektor je ortogonalan na oba izvorna vektora, ali nije jedinični vektor. Da bismo ga pretvorili u jedinični vektor, moramo ga normalizirati: podijeliti svaku od njegovih komponenti na duljinu vektora.
Jedinični vektor koji je ortogonalan izvornim vektorima je:
To je jedan jedinstveni vektor koji je ortogonalan na oba izvorna vektora, ali postoji drugi - onaj u suprotnom smjeru. Jednostavnim mijenjanjem znaka svake od komponenti dobiva se drugi vektor koji je ortogonalan izvornim vektorima.
(ali to je prvi vektor koji trebate ponuditi kao odgovor na testu ili zadatku!)
Što je jedinični vektor koji je ortogonalan ravnini koja sadrži (i + j - k) i (i - j + k)?
Znamo da ako vec C = vec A × vec B tada je vec C okomit na oba vec A i vec B Dakle, ono što nam treba je samo pronaći križni proizvod danih dvaju vektora. Dakle, (hati + hatj-hatk) × (hati-hatj + hatk) = - hatk-hatj-hatk + hati-hatj-i = -2 (hatk + hatj) Dakle, jedinični vektor je (-2 (hatk + hatj)) / (sqrt (2 ^ 2 + 2 ^ 2)) = - (hatk + hatj) / sqrt (2)
Što je jedinični vektor koji je ortogonalan ravnini koja sadrži <0, 4, 4> i <1, 1, 1>?
Odgovor je = / 0,1 / sqrt2, -1 / sqrt2 that Vektor koji je okomit na 2 druga vektora dat je križnim proizvodom. ,4 0,4,4 〈x 〈1,1,1〉 = | (hati, hatj, hatk), (0,4, 4), (1,1,1) | = hati (0) -hatj (-4) + hatk (-4) =, 0,4, -4〉 Verifikacija pomoću točkastih proizvoda ,4 0,4,4 〈. 〈0,4, -4〉 = 0 + 16-16 = 0 ,1 1,1,1 〈. 〈0,4, -4〉 = 0 + 4-4 = 0 Modul, 0,4, -4〉 je = 〈0,4, - 4〉 = sqrt (0 + 16 + 16) = sqrt32 = 4sqrt2 Jedinica vektora dobiva se dijeljenjem vektora s modulom = 1 / (4sqrt2), 0,4, -4〉 = 〈0,1 / sqrt2, -1 / sqrt2>
Što je jedinični vektor koji je ortogonalan ravnini koja sadrži (20j + 31k) i (32i-38j-12k)?
Jedinični vektor je == 1 / 1507.8 <938,992, -640> Vektor koji je ortogonalan na 2 vectros u ravnini izračunat je s odrednicom | (veci, vecj, veck), (d, e, f), (g, h, i) | gdje 〈d, e, f〉 i, g, h, i〉 su 2 vektora Ovdje imamo veca = 0 0,20,31〉 i vecb =, 32, -38, -12〉 Stoga, | (veci, vecj, veck), (0,20,31), (32, -38, -12) | = Veci | (20,31), (-38, -12) | -vecj | (0,31), (32, -12) | + Veck | (0,20), (32, -38) | = veci (20 * -12 + 38 * 31) -vecj (0 * -12-31 * 32) + veck (0 * -38-32 * 20) = 38 938,992, -640〉 = vecc proizvodi 38 938,992, -640 〈. 0 0,20,31〉 = 938 * 0 + 992 * 20-640 * 31 = 0 38 938,992, -640 〈., 32, -38, -12〉