Odgovor:
Obrazloženje:
Nagib linije
Evo,
Stavite ove vrijednosti u jednadžbu (1)
Unakrsno višestruko
Odgovor:
Obrazloženje:
S obzirom na nagib i točku na liniji, možemo napisati jednadžbu pomoću
gdje je m nagib i
Stoga je jednadžba
Koja je jednadžba crte koja prolazi kroz točku (-4,2) s nagibom nule?
Y = 2 ako je nagib grafike 0, on je vodoravan. to znači da y-koordinata grafikona ostaje ista za sve točke na grafu. ovdje y = 2 budući da točka (-4,2) leži na grafikonu. linearni graf se može prikazati pomoću jednadžbe y = mx + c gdje je m nagib, a c je y-presjek - točka gdje je x = 0, i gdje se graf dotiče y-osi. y = mx + c ako je nagib nula, m = 0 jer je 0 pomnožen s bilo kojim brojem također je 0, mx mora biti 0. to nam ostavlja y = c jer y-koordinata ostaje nepromijenjena, jednadžba se može napisati kao y = 2.
Koja je jednadžba linije koja prolazi kroz podrijetlo i okomita je na pravac koji prolazi kroz sljedeće točke: (9,2), (- 2,8)?
6y = 11x Linija (9,2) i (-2,8) ima nagib boje (bijeli) ("XXX") m_1 = (8-2) / (- 2-9) = - 6/11 Sve crte okomite na to imat će nagib boje (bijeli) ("XXX") m_2 = -1 / m_1 = 11/6 Koristeći oblik nagibne točke, pravac kroz izvor s ovim okomitim nagibom imat će jednadžbu: boja (bijela) ("XXX") (y-0) / (x-0) = 11/6 ili boja (bijela) ("XXX") 6y = 11x
Napišite točku nagiba jednadžbe s danom kosinom koja prolazi kroz označenu točku. A.) linija s nagibom -4 koja prolazi kroz (5,4). i B.) pravac s nagibom 2 koji prolazi (-1, -2). molim pomoć, ovo je zbunjujuće?
Y-4 = -4 (x-5) "i" y + 2 = 2 (x + 1)> "jednadžba crte u" boji (plavoj) "točki-nagiba" je. • boja (bijela) (x) y-y_1 = m (x-x_1) "gdje je m nagib i" (x_1, y_1) "točka na crti" (A) "s obzirom na" m = -4 "i "(x_1, y_1) = (5,4)" zamjenjujući te vrijednosti jednadžbi daje "y-4 = -4 (x-5) larrcolor (plavo)" u obliku točke-nagiba "(B)" dano "m = 2 "i" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (plavo) u obliku točke-nagiba "