Duljina pravokutnika je 3 puta veća od njezine širine. Ako je duljina povećana za 2 inča i širina za 1 inč, novi opseg bi bio 62 inča. Koja je širina i duljina pravokutnika?
Duljina je 21, a širina 7 I koristi d za duljinu i w za širinu. Prvo je dano da je l = 3w Nova duljina i širina je l + 2 i w + 1 odnosno Novi perimetar je 62 Dakle, l + 2 + l 2 + w + 1 + w + 1 = 62 ili, 2l + 2w = 56 l + w = 28 Sada imamo dvije relacije između l i w zamjenjujemo prvu vrijednost l u drugoj jednadžbi dobivamo, 3w + w = 28 4w = 28 w = 7 Stavljanje ove vrijednosti w u jednu od jednadžbi, l = 3 * 7 l = 21 Dakle duljina je 21 i širina je 7
Duljina pravokutnika je 4 inča veća od njezine širine. Ako se 2 inča uzmu iz duljine i dodaju u širinu i slika postaje kvadrat s površinom od 361 kvadratnih inča. Koje su dimenzije izvorne figure?
Pronašao sam duljinu od 25 inča i širinu od 21 in. Pokušao sam ovo:
Širina pravokutnika je 3 inča manja od njezine duljine. Površina pravokutnika je 340 kvadratnih inča. Koja je duljina i širina pravokutnika?
Duljina i širina su 20 i 17 inča. Prije svega, razmotrimo x dužinu pravokutnika i y širinu. Prema početnoj tvrdnji: y = x-3 Sada znamo da je područje pravokutnika dano kao: A = x cdot y = x cdot (x-3) = x ^ 2-3x i jednako je: A = x ^ 2-3x = 340 Tako dobivamo kvadratnu jednadžbu: x ^ 2-3x-340 = 0 Rješavamo je: x = {-b pm sqrt {b ^ 2-4ac}} / {2a} gdje a, b, c dolaze iz aksa ^ 2 + bx + c = 0. Zamjenom: x = {- (- 3) pm sqrt {(- 3) ^ 2-4 cdot 1 cdot (-340)}} / {2 cdot 1} = = {3 pm sqrt {1369}} / {2 } = {3 pm 37} / 2 Dobivamo dva rješenja: x_1 = {3 + 37} / 2 = 20 x_2 = {3-37} / 2 = -17 Kako govorimo o inčima, moramo uzeti poziti