Jednostavni integral: int {-3x + 5} / {x ^ 2-2x + 5} dx =?

Jednostavni integral: int {-3x + 5} / {x ^ 2-2x + 5} dx =?
Anonim

Odgovor:

#int (-3x + 5) / (x ^ 2-2x + 5) * dx #

# = Arctan ((x-1) / 2) -3 / 2ln (x ^ 2-2x + 5) #

Obrazloženje:

#int (-3x + 5) / (x ^ 2-2x + 5) * dx #

=# -int (3x-5) / (x ^ 2-2x + 5) * dx #

=# -int (3x-3-2) / (x ^ 2-2x + 5) * dx #

=# -int (3x-3) / (x ^ 2-2x + 5) * dx #+#int 2 / (x ^ 2-2x + 5) * dx #

=#int 2 / ((x-1) ^ 2 + 4) * dx #-# 3 / 2int (2x-2) / (x ^ 2-2x + 5) #

=#arctan ((x-1) / 2) -3 / 2ln (x ^ 2-2x + 5) #

Odgovor:

# = - 3 / 2ln (x ^ 2-2x + 5) + tan ^ 1 ((x-1) / 2) + C #

Obrazloženje:

#int (-3x + 5) / (x ^ 2-2x + 5) dx #

# = int (-3x + 5-2 + 2) / (x ^ 2-2x + 5) dx #

# = int (-3x + 3) / (x ^ 2-2x + 5) + 2 / (x ^ 2-2x + 5) dx #

# = - int (3 x-3), / (x ^ 2-2x + 5) + dx Int2 / (x ^ 2-2x + 5) dx #

Za:

# -Int (3 x-3), / (x ^ 2-2x + 5) dx #

Koristite zamjenu:

# U = x ^ 2-2x + 5 #

#implies du = 2x-2dx podrazumijeva 3 / 2du = 3x-3dx #

#therefore -int (3x-3) / (x ^ 2-2x + 5) dx = -int (3/2) / udu = -3 / 2ln (u) + C #

Obrni zamjenu:

# -3 / 2ln (x ^ 2-2x + 5) + C #

Sada za drugi integral:

# Int2 / (x ^ 2-2x + 5) dx #

Napišite nazivnik u dovršenom kvadratnom obliku:

# X ^ 2-2x + 5 = (x-1) ^ 2 - (- 1) ^ 2 + 5 = (x-1) ^ 2 + 4 #

Tako:

# Int2 / (x ^ 2-2x + 5) dx = 2intdx / ((x-1) ^ 2 + 4) *

Sada zamijenite:

# 2u = (x-1) #

#implies du = 2dx # Tako:

# 2intdx / ((x-1) ^ 2 + 4) = 2int2 / (4U ^ 2 + 4) du = 4 / 4int1 / (z ^ 2 + 1) du #

Što ćemo prepoznati će se jednostavno integrirati u obrnuti tangent koji nam daje:

# = Tan ^ 1 (u) + C '#

Obrni zamjenu:

# = Tan ^ 1 ((x-1) / 2) + C '#

Dakle, "nešto" je:

#int (-3x + 5) / (x ^ 2-2x + 5) dx #

# = - int (3 x-3), / (x ^ 2-2x + 5) + dx Int2 / (x ^ 2-2x + 5) dx #

# = - 3 / 2ln (x ^ 2-2x + 5) + tan ^ 1 ((x-1) / 2) + C #