Odgovor:
Sve crte okomite na
imaju nagib od
Obrazloženje:
Ako linija ima nagib od
Stoga su sve crte okomite na
Jednadžba pravca je 2x + 3y - 7 = 0, pronađite: - (1) nagib linije (2) jednadžba pravca okomitog na zadanu crtu i prolazi kroz sjecište pravca x-y + 2 = 0 i 3x + y-10 = 0?
-3x + 2y-2 = 0 boja (bijela) ("ddd") -> boja (bijela) ("ddd") y = 3 / 2x + 1 Prvi dio u mnogo detalja pokazuje kako prvi principi funkcioniraju. Kada se naviknete na ove i koristite prečace, koristit ćete mnogo manje linija. boja (plava) ("Odredite presjek početnih jednadžbi") x-y + 2 = 0 "" ....... Jednadžba (1) 3x + y-10 = 0 "" .... Jednadžba ( 2) Oduzmite x s obje strane jednadžbe (1) dajući -y + 2 = -x Pomnožite obje strane s (-1) + y-2 = + x "" .......... Jednadžba (1_a) ) Korištenje jednadžbe (1_a) zamjena za x u (2) boji (zelena) (3 boja (crvena) (x) + y
Jednadžba pravca je 3y + 2x = 12. Koji je nagib pravca okomit na zadanu liniju?
Okomiti nagib bi bio m = 3/2. Ako jednadžbu pretvorimo u formu presjeka nagiba, y = mx + b možemo odrediti nagib ove linije. 3y + 2x = 12 Započnite pomoću inverznog aditiva za izoliranje y-termina. 3y otkaži (+ 2x) poništi (-2x) = 12-2x 3y = -2x +12 Sada upotrijebite multiplikativnu inverznu za izoliranje y (cancel3y) / cancel3 = (- 2x) / 3 +12/3 y = -2 / 3x +4 Za ovu jednadžbu pravca nagib je m = -2 / 3 Okomiti nagib na to bi bio inverzni recipročan. Okomiti nagib bi bio m = 3/2
Nagib linije je -1/3. Kako pronalazite nagib pravca koji je okomit na tu liniju?
"okomiti nagib" = 3> "S obzirom na pravac s nagibom m, nagib linije" "okomit na nju je" m_ "(boja (crvena)" okomita ") = - 1 / m rArrm _ (" okomica ") = - 1 / (- 1/3) = 3