Odgovor:
Drugi broj je
Obrazloženje:
Neka HCF dva broja kažu
Stoga
Stoga
tj
i
i imamo
tj
Zbroj dva broja je 23. Ako je jedan od brojeva prepolovljen, zbroj će postati 17. Koji su brojevi?
To je problem sustava jednadžbi. Pod pretpostavkom da je prvi broj x, a drugi y. x + y = 23 x / 2 + y = 17 y = 23 - x -> x / 2 + 23 - x = 17 x / 2 - x = -6 (x - 2x) / 2 = - 6 x - 2x -12 -x = -12 x = 12 12 + y = 23 y = 23 - 12 y = 11 Brojevi su 11 i 12. Nadam se da ovo pomaže!
Poznavanje formule za zbroj N cijelih brojeva a) što je zbroj prvih N uzastopnih kvadratnih brojeva, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1) ) ^ 2 + N ^ 2? b) Zbroj prvih N uzastopnih prirodnih brojeva kocke Sigma_ (k = 1) ^ N k ^ 3?
Za S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n) ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Imamo sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 rješavanje za sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3/3 (n + 1) / 3-sum_ {i = 0} ^ ni, ali sum_ {i = 0} ^ ni = ((n + 1) n) / 2 tako sum_ {i = 0} ^ ni ^ 2 = (n) +1) ^ 3 / 3- (n +
Winnie preskače sa 7s počevši od 7 i piše ukupno 2.000 brojeva, Grogg preskoči broj od 7 počevši od 11 i piše ukupno 2.000 brojeva Koja je razlika između zbroja svih Groggovih brojeva i zbroja svih Winniejevih brojeva?
Pogledajte postupak rješavanja u nastavku: Razlika između Winnieja i Groggovog prvog broja je: 11 - 7 = 4 Oboje su napisali 2000 brojeva Oba su preskočila brojeći se istim iznosom - 7s Dakle, razlika između svakog broja koji je Winnie napisao i svaki broj Grogg Također je 4 Stoga je razlika u zbroju brojeva: 2000 xx 4 = boja (crvena) (8000)