Odgovor:
Obrazloženje:
pustiti
Budući da su linije okomite, dakle, proizvod nagiba će biti jednak
pustiti
Stoga je nagib potrebne linije
Koji je nagib bilo koje linije okomite na pravac koji prolazi kroz (5,0) i (-4, -3)?
Nagib pravca okomitog na pravac koji prolazi kroz (5,0) i (-4, -3) bit će -3. Nagib pravokutne crte bit će jednak negativnom obrnutom nagibu izvorne linije. Moramo početi s pronalaženjem nagiba izvorne linije. To možemo naći uzimajući razliku u y podijeljenu s razlikom u x: m = (0 - (- 3)) / (5 - (- 4)) = (3) / 9 = 1/3. nagibu okomite crte, samo uzimamo negativnu inverziju 1: 3: -1 / (1/3) = - 1 * 3/1 = -3 To znači da je nagib pravca okomit na izvorni -3.
Koji je nagib bilo koje linije okomite na pravac koji prolazi kroz (12, -2) i (7,8)?
M = 1/2 Nagib pravca koji je okomit na zadanu liniju bio bi inverzni nagib zadane crte m = a / b, a okomiti nagib bi bio m = -b / a Formula za nagib linije na dvije koordinatne točke je m = (y_2-y_1) / (x_2-x_1) Za koordinatne točke (12, -2) i (7,8) x_1 = 12 x_2 = 7 y_1 = -2 y_2 = 8 m = ( 8 - (- 2)) / (7-12) m = 10 / -5 Nagib je m = -10/5 = -2/1, a okomiti nagib bio bi recipročan (-1 / m) m = 1 / 2
Koji je nagib bilo koje linije okomite na pravac koji prolazi kroz (12, -3) i (-1,4)?
M = 13/7 Prvo nađete nagib zadanih točaka pomoću formule m = (y_2-y_1) / (x_2-x_1) m = (4 - (- 3)) / (- 1-12) = -7 / 13 tako da je nagib okomite linije na zadanu crtu recipročan nagibu te crte s promjenom znaka tako da je nagib okomite linije 13/7