Odgovor:
Obrazloženje:
Nagib pravca koji je okomit na zadanu liniju bio bi inverzni nagib zadane linije
Formula za nagib linije temelji se na dvije koordinatne točke
Za koordinatne točke
Nagib je
okomiti nagib bi bio recipročan (-1 / m)
Koji je nagib bilo koje linije okomite na pravac koji prolazi kroz (5,0) i (-4, -3)?
Nagib pravca okomitog na pravac koji prolazi kroz (5,0) i (-4, -3) bit će -3. Nagib pravokutne crte bit će jednak negativnom obrnutom nagibu izvorne linije. Moramo početi s pronalaženjem nagiba izvorne linije. To možemo naći uzimajući razliku u y podijeljenu s razlikom u x: m = (0 - (- 3)) / (5 - (- 4)) = (3) / 9 = 1/3. nagibu okomite crte, samo uzimamo negativnu inverziju 1: 3: -1 / (1/3) = - 1 * 3/1 = -3 To znači da je nagib pravca okomit na izvorni -3.
Koji je nagib bilo koje linije okomite na pravac koji prolazi kroz (10,2) i (7, -2)?
Neka je m nagib linije koji prolazi kroz zadane točke i m 'je nagib linije okomito na pravac koji prolazi kroz zadane točke. Budući da su linije okomite, dakle produkt nagiba bit će jednak -1. tj. m * m '= - 1 podrazumijeva da je m' = - 1 / m implicira m '= - 1 / ((y_2-y_1) / (x_2-x_1)) implicira m' = - (x_2-x_1) / (y_2) -y_1) Neka (7, -2) = (x_1, y_1) i (10,2) = (x_2, y_2) implicira m '= - (10-7) / (2 - (- 2)) = - 3 / (2 + 2) = - 3/4 podrazumijeva m '= - 3/4 Dakle, nagib potrebne linije je -3/4.
Koji je nagib bilo koje linije okomite na pravac koji prolazi kroz (12, -3) i (-1,4)?
M = 13/7 Prvo nađete nagib zadanih točaka pomoću formule m = (y_2-y_1) / (x_2-x_1) m = (4 - (- 3)) / (- 1-12) = -7 / 13 tako da je nagib okomite linije na zadanu crtu recipročan nagibu te crte s promjenom znaka tako da je nagib okomite linije 13/7