Odgovor:
Odgovor je točno 20.
Obrazloženje:
Jedno od svojstava kvadratnog korijena je
#sqrt a xx sqrt b = sqrt (axxb) #
dugo kao
Tako:
#sqrt 10 xx sqrt 40 = sqrt (10 x 40) #
#color (bijelo) (sqrt 10 xx sqrt 40) = sqrt (400) #
#color (bijelo) (sqrt 10 xx sqrt 40) = 20 #
od
Što je konjugat kvadratnog korijena 2 + kvadratnog korijena 3 + kvadratnog korijena od 5?
Sqrt (2) + sqrt (3) + sqrt (5) nema jedan konjugat. Ako ga pokušavate eliminirati iz imenitelja, onda morate pomnožiti s nečim poput: (sqrt (2) + sqrt (3) -sqrt (5)) (sqrt (2) -sqrt (3) + sqrt (5) )) (sqrt (2) -sqrt (3) -sqrt (5)) Proizvod od (sqrt (2) + sqrt (3) + sqrt (5)) i to je -24
Koji je pojednostavljeni oblik kvadratnog korijena od 10 - kvadratnog korijena od 5 kvadratnog korijena od 10 + kvadratnog korijena od 5?
(sqrt (10) -sqrt (5)) / (sqrt (10)) + sqrt (5) = 3-2sqrt (2) (sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) ) boja (bijela) ("XXX") = otkazati (sqrt (5)) / otkazati (sqrt (5)) * (sqrt (2) -1) / (sqrt (2) +1) boja (bijela) ( XXX ") = (sqrt (2) -1) / (sqrt (2) +1) * (sqrt (2) -1) / (sqrt (2) -1) boja (bijela) (" XXX ") = ( sqrt (2) -1) ^ 2 / ((sqrt (2) ^ 2-1 ^ 2) boja (bijela) ("XXX") = (2-2sqrt2 + 1) / (2-1) boja (bijela) ( "XXX") = 3-2sqrt (2)
Koji je kvadratni korijen od 7 + kvadratni korijen od 7 ^ 2 + kvadratni korijen od 7 ^ 3 + kvadratni korijen od 7 ^ 4 + kvadratni korijen od 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Prva stvar koju možemo učiniti je poništiti korijene onih s ravnim ovlastima. Od: sqrt (x ^ 2) = x i sqrt (x ^ 4) = x ^ 2 za bilo koji broj, možemo samo reći da sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Sada, 7 ^ 3 se može prepisati kao 7 ^ 2 * 7, i da 7 ^ 2 može izaći iz korijena! Isto vrijedi i za 7 ^ 5, ali je prepisano kao 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) Sada stavimo korijen u dokaz, s