Kako pronaći derivat f (x) = sqrt (^ 2 + x ^ 2)?

Kako pronaći derivat f (x) = sqrt (^ 2 + x ^ 2)?
Anonim

Odgovor:

#f '(x) = x / (sqrt (^ 2 + x ^ 2)) #

Obrazloženje:

Pravilo lanca ide ovako:

Ako #f (x) = (g (x)) ^ n #, onda #F "(x) = N (g (x)) ^ (n-1) + d / DXG (x) *

Primjenom ovog pravila:

#f (x) = sqrt (a ^ 2 + x ^ 2) = (a ^ 2 + x ^ 2) ^ (1/2) #

#f '(x) = 1/2 (^ 2 + x ^ 2) ^ (1 / 2-1) * d / dx (a ^ 2 + x ^ 2) #

#f '(x) = 1/2 (a ^ 2 + x ^ 2) ^ (- 1/2) * 2x #

#f '(x) = 1 / (2 (a ^ 2 + x ^ 2) ^ (1/2)) * 2x #

#f '(x) = x / ((a ^ 2 + x ^ 2) ^ (1/2)) #

#f '(x) = x / (sqrt (^ 2 + x ^ 2)) #