Odgovor:
#= 3/10#
Obrazloženje:
Korak 1:
Odlučnost:
#A. (6-3 / 5) = 27/5 #
#b. (1/4 + 2/9 -5/12) = 1/18 #
#c. (9/2 -7 / 4-5 / 2) = 1/4 #
Korak 2:
pomnožiti
#a. (27/5) * (1/18) = 3/10
#b. (3/2) * (1/4) = 3/8 #
Korak 3:
Dodamo proizvod
#A. (3/10) + (3/8) = 27/40 #
Korak 4:
pomnožiti
#A. 27/40 * (2/27) = 1/20 #
Korak 5:
Dodamo proizvod (opet: v)
#A. 1/20 + 1/4 = 3/10 #
Sažetak je:
#= (27/5) * (1/18)+(3/2) * (1/4) * (2/27) + 1/4#
#= (3/10)+(3/8) * (2/27) + 1/4#
#= 27/40 * (2/27) + 1/4#
# = poništi (27) / poništi (40) * (poništi (2) / poništi (27)) + 1/4 #
#= 1/20 + 1/4#
#= 1/20 + 1/4#
#= 3/10#
Odgovor:
#3/10#
Obrazloženje:
Identificirajte pojedinačne pojmove, a zatim ih pojednostavite zasebno
#color (plava) ((6-3 / 5) xx (1/4 + 2 / 9-5 / 12) + 3 / 2xx (9 / 2-7 / 4-5 / 2) xx2 / 27) boja (crvena) ("" + "" 1/4) #
Unutar prvog termina, prikazanog plavom bojom, pojednostavite svaki nosač zasebno.
# = boja (plava) ((5 2/5) xx ((9 + 8-15) / 36) + 3 / 2xx ((18-7 -10) / 4) xx2 / 27) boja (crvena) ("" + "" 1/4) #
# = boja (plava) (boja (zelena) ((27/5) xx ((2) / 36)) boja (limegreen) (+ 3 / 2xx ((1) / 4)) xx2 / 27) boja (crveno) ("" + "" 1/4) #
Sada poništite gdje je to moguće
# = boja (plava) (boja (zelena) (otkaže 27 ^ 3 / 5xx1 / cancel18 ^ 2) boja (limegreen) ("" + "" 3 / 2xx1 / 4) xx2 / 27) boja (crvena) (" "+" "1/4) #
Pomnožite ravno preko da biste dobili:
# = boja (plava) (boja (zelena) (3/10) boja (limegreen) (+ 3/8) xx2 / 27) boja (crvena) ("" + "" 1/4) #
# = boja (plava) ((boja (zelena) (12) boja (limegreen) (+ 15)) / 40 xx2 / 27) boja (crvena) ("" + "" 1/4) #
# = boja (plava) (27 / 40xx2 / 27) boja (crvena) ("" + "" 1/4) #
# = boja (plava) (cancel27 / cancel40 ^ 20xxcancel2 / cancel27) boja (crvena) ("" + "" 1/4) #
# = boja (plava) (1/20) boja (crvena) ("" + "" 1/4) #
Sada dodajte dva pojma zajedno, # = (Boja (plava) (1) boja (crvena) (+ 5)) / 20 #
#=6/20#
#=3/10#