Kako razlikovati f (x) = sqrt (ln (x ^ 2 + 3) koristeći pravilo lanca.?

Kako razlikovati f (x) = sqrt (ln (x ^ 2 + 3) koristeći pravilo lanca.?
Anonim

Odgovor:

#F "(x) = (x (ln (x ^ 2 + 3)) ^ (- 1/2)) / (x ^ 2 + 3) = x / ((x ^ 2 + 3) (ln (x ^ 2 + 3)) ^ (1/2)) = x / ((x ^ 2 + 3) sqrt (ln (x ^ 2 + 3))) *

Obrazloženje:

Dobili smo:

# Y = (ln (x ^ 2 + 3)) ^ (1/2) #

# Y = 1 / 2x (ln (x ^ 2 + 3)) ^ (1 / 2-1) + d / dx ln (x ^ 2 + 3) #

#Y '= (ln (x ^ 2 + 3)) ^ (- 1/2) / 2 x d / dx ln (x ^ 2 + 3) #

# D / dx ln (x ^ 2 + 3) = (d / dx x ^ 2 + 3) / (x ^ 2 + 3) *

# D / dx x ^ 2 + 3 = 2x #

#Y '= (ln (x ^ 2 + 3)) ^ (- 1/2) / 2 x (2 x) / (x ^ 2 + 3) = (x (ln (x ^ 2 + 3)) ^ (-1/2)) / (x ^ 2 + 3) = x / ((x ^ 2 + 3) (ln (x ^ 2 + 3)) ^ (1/2)) = x / ((x ^ 2 + 3) sqrt (ln (x ^ 2 + 3))) *