Odgovor:
Obrazloženje:
Korištenje oblika kuta jednadžbe koja prolazi kroz
Kako je nagib vodoravne crte uvijek nula, željena jednadžba vodoravne crte koja prolazi kroz točku
Što je jednadžba linije koja prolazi kroz točku (10, 5) i okomita je na pravac čija je jednadžba y = 54x 2?
Jednadžba pravca s nagibom -1/54 i prolazom (10,5) je boja (zelena) (x + 54y = 280 y = 54x - 2 nagib m = 54 nagib okomite crte m_1 = 1 / -m = -1 / 54 Jednadžba pravca s nagibom -1/54 i prolazi kroz (10,5) je y - 5 = - (1/54) * (x - 10) 54y - 270 = -x + 10 x + 54y = 280
Koja je jednadžba linije koja prolazi kroz podrijetlo i okomita je na pravac koji prolazi kroz sljedeće točke: (9,2), (- 2,8)?
6y = 11x Linija (9,2) i (-2,8) ima nagib boje (bijeli) ("XXX") m_1 = (8-2) / (- 2-9) = - 6/11 Sve crte okomite na to imat će nagib boje (bijeli) ("XXX") m_2 = -1 / m_1 = 11/6 Koristeći oblik nagibne točke, pravac kroz izvor s ovim okomitim nagibom imat će jednadžbu: boja (bijela) ("XXX") (y-0) / (x-0) = 11/6 ili boja (bijela) ("XXX") 6y = 11x
Napišite točku nagiba jednadžbe s danom kosinom koja prolazi kroz označenu točku. A.) linija s nagibom -4 koja prolazi kroz (5,4). i B.) pravac s nagibom 2 koji prolazi (-1, -2). molim pomoć, ovo je zbunjujuće?
Y-4 = -4 (x-5) "i" y + 2 = 2 (x + 1)> "jednadžba crte u" boji (plavoj) "točki-nagiba" je. • boja (bijela) (x) y-y_1 = m (x-x_1) "gdje je m nagib i" (x_1, y_1) "točka na crti" (A) "s obzirom na" m = -4 "i "(x_1, y_1) = (5,4)" zamjenjujući te vrijednosti jednadžbi daje "y-4 = -4 (x-5) larrcolor (plavo)" u obliku točke-nagiba "(B)" dano "m = 2 "i" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (plavo) u obliku točke-nagiba "