Odgovor:
Nagib bilo koje crte okomite na pravac koji prolazi
Obrazloženje:
Ako su dvije točke
Kao što su točke
nagib linije koja ih spaja jest
tj
Daljnji produkt nagiba dvaju pravaca koji su okomiti jedan na drugi je
Otuda nagib linije okomit na pravac koji prolazi
Koji je nagib bilo koje linije okomite na pravac koji prolazi kroz (5,0) i (-4, -3)?
Nagib pravca okomitog na pravac koji prolazi kroz (5,0) i (-4, -3) bit će -3. Nagib pravokutne crte bit će jednak negativnom obrnutom nagibu izvorne linije. Moramo početi s pronalaženjem nagiba izvorne linije. To možemo naći uzimajući razliku u y podijeljenu s razlikom u x: m = (0 - (- 3)) / (5 - (- 4)) = (3) / 9 = 1/3. nagibu okomite crte, samo uzimamo negativnu inverziju 1: 3: -1 / (1/3) = - 1 * 3/1 = -3 To znači da je nagib pravca okomit na izvorni -3.
Koji je nagib bilo koje linije okomite na pravac koji prolazi kroz (10,2) i (7, -2)?
Neka je m nagib linije koji prolazi kroz zadane točke i m 'je nagib linije okomito na pravac koji prolazi kroz zadane točke. Budući da su linije okomite, dakle produkt nagiba bit će jednak -1. tj. m * m '= - 1 podrazumijeva da je m' = - 1 / m implicira m '= - 1 / ((y_2-y_1) / (x_2-x_1)) implicira m' = - (x_2-x_1) / (y_2) -y_1) Neka (7, -2) = (x_1, y_1) i (10,2) = (x_2, y_2) implicira m '= - (10-7) / (2 - (- 2)) = - 3 / (2 + 2) = - 3/4 podrazumijeva m '= - 3/4 Dakle, nagib potrebne linije je -3/4.
Koji je nagib bilo koje linije okomite na pravac koji prolazi kroz (12, -2) i (7,8)?
M = 1/2 Nagib pravca koji je okomit na zadanu liniju bio bi inverzni nagib zadane crte m = a / b, a okomiti nagib bi bio m = -b / a Formula za nagib linije na dvije koordinatne točke je m = (y_2-y_1) / (x_2-x_1) Za koordinatne točke (12, -2) i (7,8) x_1 = 12 x_2 = 7 y_1 = -2 y_2 = 8 m = ( 8 - (- 2)) / (7-12) m = 10 / -5 Nagib je m = -10/5 = -2/1, a okomiti nagib bio bi recipročan (-1 / m) m = 1 / 2