Koja je jednadžba linije koja prolazi (1, 2) i paralelna je s linijom čija je jednadžba 2x + y - 1 = 0?
Pogledajte: Grafički:
Koja je jednadžba linije koja prolazi (1,2) i paralelna je s linijom čija je jednadžba 4x + y-1 = 0?
Y = -4x + 6 Pogledajte dijagram Dana linija (crvena linija crte) je - 4x + y-1 = 0 Tražena linija (zelena linija boje) prolazi kroz točku (1,2) Korak - 1 Pronađite nagib zadane linije. Ona je u obliku ax + by + c = 0 Njegov nagib je definiran kao m_1 = (- a) / b = (- 4) / 1 = -4 Korak -2 Dvije linije su paralelne. Zbog toga su njihove kosine jednake. Nagib tražene linije je m_2 = m_1 = -4 Korak - 3 Jednadžba tražene linije y = mx + c Gdje-m = -4 x = 1 y = 2 Nađi c c + mx = y c + (- 4) 1 = 2 c-4 = 2 c = 2 + 4 = 6 Nakon što ste znali c koristiti nagib -4 i presresti 6 kako bi pronašli jednadžbu y = -4x + 6
Kako ste pronašli sve točke na krivulji x ^ 2 + xy + y ^ 2 = 7 gdje je tangenta paralelna s x-osi, a točka na kojoj je tangenta paralelna s y-osi?
Tangenta je paralelna osi x kada je nagib (dj / dx) jednak nuli i paralelan je s osi y kada nagib (opet dy / dx) prelazi u oo ili -oo. dy / dx: x ^ 2 + xy + y ^ 2 = 7 d / dx (x ^ 2 + xy + y ^ 2) = d / dx (7) 2x + 1y + xdy / dx + 2y dy / dx = 0 dy / dx = - (2x + y) / (x + 2y) Sada, dy / dx = 0 kada je nuimerator 0, pod uvjetom da to ne čini i nazivnik 0. 2x + y = 0 kada je y = -2x Sada imamo dvije jednadžbe: x ^ 2 + xy + y ^ 2 = 7 y = -2x Riješite (zamjenom) x ^ 2 + x (-2x) + (-2x) ^ 2 = 7 x ^ 2 -2x ^ 2 + 4x ^ 2 = 7 3x ^ 2 = 7 x = + - sqrt (7/3) = + - sqrt21 / 3 Koristeći y = -2x, dobivamo Tangenta na krivulju je vodoravna