Odgovor:
Ako
Obrazloženje:
b je -39 zbog činjenice da
ili
Vaš odgovor je -39.
Odgovor:
Obrazloženje:
# "izražavanje kao matematička izjava" #
# a-b = 105larr "riješiti za b" #
# RArr66-b = 105 #
# "oduzmi 66 s obje strane" #
#cancel (66) poništavanje (-66), b = 105-66 #
# rArr-b = 39larr "pomnoži se s po - 1" #
# RArrb = -39 #
Što je stvarni broj, cijeli broj, cijeli broj, racionalni broj i iracionalan broj?
Objašnjenje Niže Racionalni brojevi dolaze u 3 različita oblika; cijeli brojevi, frakcije i završavaju ili ponavljaju decimale kao što je 1/3. Iracionalni brojevi su prilično 'neuredni'. Ne mogu se pisati kao razlomci, oni su beskrajni, neponovljivi decimali. Primjer toga je vrijednost π. Cijeli se broj može nazvati cijeli broj i to je pozitivan ili negativan broj ili nula. Primjer toga je 0, 1 i -365.
Jedan broj je 4 manje od 3 puta drugog broja. Ako se 3 više od dva puta prvi broj smanji za 2 puta od drugog broja, rezultat je 11. Koristite metodu supstitucije. Koji je prvi broj?
N_1 = 8 n_2 = 4 Jedan broj je 4 manji od -> n_1 =? - 4 3 puta "........................." -> n_1 = 3? -4 boja drugog broja (smeđa) (".........." -> n_1 = 3n_2-4) boja (bijela) (2/2) Ako još 3 "... ........................................ "->? +3 od dva puta prvi broj "............" -> 2n_1 + 3 se smanjuje za "......................... .......... "-> 2n_1 + 3-? 2 puta drugi broj "................." -> 2n_1 + 3-2n_2 rezultat je 11 boja (smeđa) (".......... ........................... "-> 2n_1 + 3-2n_2 = 11)" ~~~~~~~~~~~ ~~~~~~~
Je li sqrt21 pravi broj, racionalni broj, cijeli broj, cijeli broj, iracionalan broj?
To je iracionalan broj i stoga stvaran. Prvo ćemo dokazati da je sqrt (21) stvarni broj, zapravo, kvadratni korijen svih pozitivnih realnih brojeva je stvaran. Ako je x pravi broj, tada definiramo za pozitivne brojeve sqrt (x) = "sup" {yinRR: y ^ 2 <= x}. To znači da promatramo sve realne brojeve y tako da y ^ 2 <= x i uzmemo najmanji stvarni broj koji je veći od svih ovih y, tzv. Supremum. Za negativne brojeve, ova y ne postoje, jer za sve realne brojeve zauzimanje kvadrata ovog broja rezultira pozitivnim brojem, a svi pozitivni brojevi su veći od negativnih brojeva. Za sve pozitivne brojeve uvijek postoji