Odgovor:
Obrazloženje:
Ako krug ima središte u
Standardni obrazac za krug sa središtem
U ovom slučaju imamo
grafikon {x ^ 2 + (y-6) ^ 2 = 109 -14.24, 14.23, -7.12, 7.11}
Odgovor:
Obrazloženje:
Znači da
Stoga je jednadžba kruga
Središte kruga je na (0,0), a njegov radijus je 5. Da li točka (5, -2) leži na krugu?
Ne Krug sa središtem c i radijus r je mjesto (zbirka) točaka koje su udaljene od c. Dakle, s obzirom na r i c, možemo ustanoviti je li točka u krugu ako vidimo je li udaljenost r od c. Udaljenost između dvije točke (x_1, y_1) i (x_2, y_2) može se izračunati kao "udaljenost" = sqrt ((x_2-x_1) ^ 2 + (y_2-y_1) ^ 2) (ova se formula može izvesti pomoću Pitagorin teorem) Dakle, udaljenost između (0, 0) i (5, -2) je sqrt ((5-0) ^ 2 + (- 2-0) ^ 2) = sqrt (25 + 4) = sqrt ( 29) Kao sqrt (29)! = 5 to znači da (5, -2) ne leži na danoj kružnici.
Dobili ste krug B čije je središte (4, 3) i točku na (10, 3) i drugu kružnicu C čije je središte (-3, -5), a točka na tom krugu (1, -5) , Koji je omjer kruga B u krugu C?
3: 2 "ili" 3/2 "trebamo izračunati radijuse krugova i usporediti" "radijus je udaljenost od centra do točke" "u krugu" "u središtu B" = (4,3) ) "i točka je" = (10,3) "budući da su y-koordinate obje 3, onda je polumjer" "razlika u x-koordinatama" rArr "radijus B" = 10-4 = 6 " od C "= (- 3, -5)" i točka je "= (1, -5)" y-koordinate su obje - 5 "rArr" radijus C "= 1 - (- 3) = 4" omjer " = (boja (crvena) "radius_B") / (boja (crvena) "radius_C") = 6/4 = 3/2 = 3: 2
Kako ste pronašli središte i radijus kruga s obzirom na radijus: 5 središte: (0,0)?
Errr ... niste li ovdje odgovorili na svoje pitanje? Jeste li mislili pronaći jednadžbu kruga? Opća jednadžba kruga dana je: (x-a) ^ 2 + (y-b) ^ 2 = r ^ 2 gdje je (a, b) središte kruga. Jednadžba postaje: (x-0) ^ 2 + (y-0) ^ 2 = 5 ^ 2 x ^ 2 + y ^ 2 = 25