Pravokutni travnjak je širok 24 metra i dugačak je 32 metra. Uz unutarnje rubove svih četiriju strana bit će postavljen pločnik. Preostali travnjak ima površinu od 425 četvornih metara. Koliko će biti široka šetnja?

Pravokutni travnjak je širok 24 metra i dugačak je 32 metra. Uz unutarnje rubove svih četiriju strana bit će postavljen pločnik. Preostali travnjak ima površinu od 425 četvornih metara. Koliko će biti široka šetnja?
Anonim

Odgovor:

# "width" = "3.5 m" #

Obrazloženje:

Uzmite širinu bočne hoda kao #x#, tako da duljina preostalog travnjaka postane

#l = 32 - 2x #

i širina travnjaka postaje

#w = 24 - 2x #

Područje travnjaka je

#A = l * w = (32 - 2x) * (24 - 2x) = 4x ^ 2 -112x + 768 #

Ovo je jednako # "425 ft" ^ 2 -> # dan

To znači da imate

# 4x ^ 2 - 112x + 768 = 425 #

# 4x ^ 2 - 112x + 343 = 0 #

To je kvadratna jednadžba i možete je riješiti pomoću kvadratne formule

#x_ (1,2) = (-b + - sqrt (b ^ 2 - 4 * a * c)) / (2 * a), gdje

# S # je koeficijent od # x ^ 2 -> # #4# u ovom slučaju

# B # je koeficijent od #x -> # #-112# u ovom slučaju

# C # je konstanta #-> 343# u ovom slučaju

Od dvije vrijednosti za koje dobivate #x#jedan će biti apsurdan. Odbacite ga i razmislite o drugom.

#x_ (1,2) = (- (- 112) + - sqrt (7056)) / (2 * 4) #

#x_ (1,2) = (112 + - 84) / 8 = {(boja (crvena) (poništi (boja (crna) (x_1 = 24.5)))), (x_2 = 3.5):} #

Širina pločnika će stoga biti

#x = "3.5 m" #