Odgovor:
Odgovor će biti:
Obrazloženje:
Vi zapravo dijelite
Kako dijeliti (i + 3) / (-3i +7) u trigonometrijskom obliku?
0.311 + 0.275i Prvo ću prepisati izraze u obliku a + bi (3 + i) / (7-3i) Za kompleksni broj z = a + bi, z = r (costheta + isintheta), gdje: r = sqrt (^ 2 + b ^ 2) theta = tan ^ -1 (b / a) Nazovimo 3 + i z_1 i 7-3i z_2. Za z_1: z_1 = r_1 (costheta_1 + isintheta_1) r_1 = sqrt (3 ^ 2 + 1 ^ 2) = sqrt (9 + 1) = sqrt (10) theta_1 = tan ^ -1 (1/3) = 0,32 ^ c z_1 = sqrt (10) (cos (0,32) + isin (0,32)) Za z_2: z_2 = r_2 (costheta_2 + isintheta_2) r_2 = sqrt (7 ^ 2 + (- 3) ^ 2) = sqrt (58) theta_2 = tan ^ -1 (-3/7) = - 0,40 ^ c Međutim, budući da je 7-3i u kvadrantu 4, trebamo dobiti pozitivni kutni ekvivalent (negativni kut ide u s
Kako dijeliti (-x ^ 4-4x ^ 3 + 2x ^ 2-7x-7) / (x-2)?
-x ^ 3-6x ^ 2-10x-27 s ostatkom od -61 pomoću dugog dijeljenja,
Kako dijeliti (2x ^ 2 + x - 16) / (x-3) pomoću polinomske duge podjele?
Vidi objašnjenje.