Koja je granica kada t pristupi 0 od tan8t? / Tan5t

Koja je granica kada t pristupi 0 od tan8t? / Tan5t
Anonim

Odgovor:

#Lt (t> 0) (tan8t) / (tan5t) = 8/5 #

Obrazloženje:

Najprije pronađimo #Lt_ (x-> 0) tanx / x #

#Lt_ (x-> 0) tanx / x = Lt_ (x-> 0) (sinx) / (xcosx) #

= #Lt_ (x-> 0) (sinx) / x xx Lt_ (x-> 0) 1 / cosx #

= # 1xx1 = 1 #

Stoga #Lt_ (t> 0) (tan8t) / (tan5t) #

= #Lt_ (t> 0) ((tan8t) / (8t)) / ((tan5t) / (5t)) xx (8t) / (5t) #

= # (Lt_ (8t-> 0) ((tan8t) / (8t))) / (Lt_ (5t-> 0) ((tan5t) / (5t))) xx8 / 5 #

= # 1 / 1xx8 / = 8 5/5 #