Funkcija p = n (1 + r) ^ t daje trenutnu populaciju grada s stopom rasta od r, t godina nakon što je populacija bila n. Koja se funkcija može koristiti za određivanje populacije bilo kojeg grada koji je prije 20 godina imao populaciju od 500 ljudi?
Stanovništvo bi dalo P = 500 (1 + r) ^ 20 Kao što je stanovništvo prije 20 godina bilo 500 stopa rasta (od grada je r (u frakcijama - ako je r% to r / 100) i sada (tj. 20 godina kasnije populacija bi se dobila s P = 500 (1 + r) ^ 20
Početna populacija je 250 bakterija, a populacija nakon 9 sati udvostručuje broj stanovnika nakon 1 sata. Koliko će bakterija biti nakon 5 sati?
Pod pretpostavkom jednakog eksponencijalnog rasta, populacija se udvostručuje svakih 8 sati. Možemo napisati formulu za populaciju kao p (t) = 250 * 2 ^ (t / 8) gdje se t mjeri u satima. 5 sati nakon početne točke, populacija će biti p (5) = 250 * 2 ^ (5/8) ~ = 386
Početna plaća za novog zaposlenika je 25000 $. Plaća za ovog zaposlenika povećava se za 8% godišnje. Koja je plaća nakon 6 mjeseci? Nakon 1 god? Nakon 3 godine? Nakon 5 godina?
Koristite formulu za jednostavnu kamatu (vidi objašnjenje) Korištenjem formule za jednostavno zanimanje I = PRN Za N = 6 "mjeseci" = 0,5 godine I = 25000 * 8/100 * 0,5 I = 1000 A = P + I = 25000 + 1000 = 26000 gdje je A plaća uključujući kamate. Slično tome kada je N = 1 I = PRN = 25000 * 8/100 * 1 I = 2000 A = P + I = 25000 + 2000 = 27000 N = 3 I = PRN = 25000 * 8/100 * 3 I = 6000 A = P + I = 31000 N = 5 I = PRN = 25000 * 8/100 * 5 = 10000 A = 35000