Odgovor:
duljine svake dulje strane
Obrazloženje:
Budući da paralelogram ima
pustiti
Opseg trokuta je 29 mm. Duljina prve strane je dvostruka dužina druge strane. Duljina treće strane je 5 više od duljine druge strane. Kako ste pronašli duljine stranice trokuta?
S_1 = 12 s_2 = 6 s_3 = 11 Perimetar trokuta je zbroj duljina svih njegovih strana. U ovom slučaju, daje se da je perimetar 29mm. Dakle, za ovaj slučaj: s_1 + s_2 + s_3 = 29 Tako rješavajući za duljinu strana, prevodimo izjave u danu u oblik jednadžbe. "Duljina prve strane je dvostruka dužina druge strane" Kako bismo to riješili, dodijelili smo slučajnu varijablu ili s_1 ili s_2. Za ovaj primjer, ja bih pustiti x biti duljina druge strane kako bi se izbjeglo frakcija u mojoj jednadžbi. tako da znamo da: s_1 = 2s_2 ali budući da smo neka s_2 biti x, sada znamo da: s_1 = 2x s_2 = x "Duljina 3. Side je 5 više od
Dvije suprotne strane paralelograma imaju duljinu od 3. Ako jedan kut paralelograma ima kut pi / 12 i područje paralelograma je 14, koliko dugo su ostale dvije strane?
Pretpostavljajući malo osnovne Trigonometrije ... Neka je x (zajednička) dužina svake nepoznate strane. Ako je b = 3 mjera osnove paralelograma, neka je h njegova vertikalna visina. Područje paralelograma je bh = 14 Budući da je b poznato, imamo h = 14/3. Iz osnovnog Trig, sin (pi / 12) = h / x. Možemo pronaći točnu vrijednost sinusa pomoću polu-kutne ili diferencijalne formule. sin (pi / 12) = sin (pi / 3 - pi / 4) = sin (pi / 3) cos (pi / 4) - cos (pi / 3) sin (pi / 4) = (sqrt6 - sqrt2) / 4. Dakle ... (sqrt6 - sqrt2) / 4 = h / xx (sqrt6 - sqrt2) = 4h Zamijeni vrijednost h: x (sqrt6 - sqrt2) = 4 (14/3) x (sqrt6 - sqrt2) =
Opseg paralelograma je 238 cm. Omjer dvije susjedne strane je 3: 4. Koje su duljine četiri strane paralelograma?
51, 68, 54, 68 Budući da su suprotne strane paralelograma jednake, možemo reći da su strane u omjeru 3: 4: 3: 4. Umnožavanjem u 238, dobivamo duljine 51, 68, 54, 68 (budući da ima 14 dijelova, svaki dio je jednak 17)