Odgovor:
Kvadratni korijen od 204 je 2
Obrazloženje:
Morate pokušati pronaći savršen kvadrat od 204. Dakle, postoji mnogo načina na koje možete doći do 204, ali pokušavate pronaći savršen kvadrat od 204. Dakle, 4 x 51 = 204. Dakle, u kući, trebali biste imati
Odgovor:
Obrazloženje:
Ovo je pitanje objavljeno ispod 'pojednostavljenje radikala'. i koja se primjenjuje u otopini.
Cilj je pronaći bilo koje kvadratne vrijednosti koje se mogu upotrijebiti za izradu 204. One se mogu 'uzeti izvan' kvadratnog korijena. Ako ih ne možete uočiti, koristite stablo premijera faktora. To ne mora biti potreba. Brza i vrlo gruba skica na margini će učiniti.
Iz gornjeg dijagrama napominjemo da je jedini kvadratični broj 2.
Tako smo i mi
Korištenjem kalkulatora
Davanje:
Gdje je simbol
Što je (kvadratni korijen 2) + 2 (kvadratni korijen 2) + (kvadratni korijen 8) / (kvadratni korijen 3)?
(sqrt (2) + 2sqrt (2) + sqrt8) / sqrt3 sqrt 8 može se izraziti kao boja (crvena) (2sqrt2 izraz sada postaje: (sqrt (2) + 2sqrt (2) + boja (crvena) (2sqrt2) = / sqrt3 = (5sqrt2) / sqrt3 sqrt 2 = 1.414 i sqrt 3 = 1.732 (5 xx 1.414) / 1.732 = 7.07 / 1.732 = 4.08
Koji je kvadratni korijen od 3 + kvadratni korijen od 72 - kvadratni korijen od 128 + kvadratni korijen od 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Znamo da 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, tako sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Znamo da je 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, tako sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Znamo da 128 = 2 ^ 7 , tako sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Pojednostavljenje 7sqrt (3) - 2sqrt (2)
Koji je kvadratni korijen od 7 + kvadratni korijen od 7 ^ 2 + kvadratni korijen od 7 ^ 3 + kvadratni korijen od 7 ^ 4 + kvadratni korijen od 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Prva stvar koju možemo učiniti je poništiti korijene onih s ravnim ovlastima. Od: sqrt (x ^ 2) = x i sqrt (x ^ 4) = x ^ 2 za bilo koji broj, možemo samo reći da sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Sada, 7 ^ 3 se može prepisati kao 7 ^ 2 * 7, i da 7 ^ 2 može izaći iz korijena! Isto vrijedi i za 7 ^ 5, ali je prepisano kao 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) Sada stavimo korijen u dokaz, s