Duljina baze jednakokračnog trokuta je 4 inča manja od duljine jedne od dvije jednake strane trokuta. Ako je opseg 32, koje su duljine svake od tri strane trokuta?
Strane su 8, 12 i 12. Možemo početi stvaranjem jednadžbe koja može predstavljati informacije koje imamo. Znamo da je ukupni perimetar 32 inča. Možemo zastupati svaku stranu s zagradama. Budući da znamo da su ostale dvije strane osim baze jednake, to možemo iskoristiti u našu korist. Naša jednadžba izgleda ovako: (x-4) + (x) + (x) = 32. To možemo reći jer je baza 4 manja od druge dvije strane, x. Kada riješimo ovu jednadžbu, dobivamo x = 12. Ako ovo uključimo za svaku stranu, dobivamo 8, 12 i 12. Kada se doda, to dolazi do perimetra 32, što znači da su naše strane u pravu.
Dva ugla jednakokračnog trokuta nalaze se u (1, 2) i (3, 1). Ako je područje trokuta 12, koje su duljine stranica trokuta?
Mjera triju strana su (2.2361, 10.7906, 10.7906) Duljina a = sqrt ((3-1) ^ 2 + (1-2) ^ 2) = sqrt 5 = 2.2361 Površina Delta = 12:. h = (Površina) / (a / 2) = 12 / (2.2361 / 2) = 12 / 1.1181 = 10.7325 strana b = sqrt ((a / 2) ^ 2 + h ^ 2) = sqrt ((1.1181) ^ 2 + (10.7325) ^ 2) b = 10.7906 Budući da je trokut jednakostraničan, treća strana je također = b = 10.7906 Mjera triju strana su (2.2361, 10.7906, 10.7906)
Dva ugla jednakokračnog trokuta nalaze se u (1, 2) i (3, 1). Ako je područje trokuta 2, koje su duljine stranica trokuta?
Pronađite visinu trokuta i koristite Pythagoras. Počnite s podsjećanjem na formulu za visinu trokuta H = (2A) / B. Znamo da je A = 2, tako da se na početak pitanja može odgovoriti pronalaženjem baze. Navedeni kutovi mogu proizvesti jednu stranu, koju ćemo nazvati bazom. Udaljenost između dviju koordinata na ravnini XY daje formula sqrt ((X1-X2) ^ 2 + (Y1-Y2) ^ 2). PlugX1 = 1, X2 = 3, Y1 = 2 i Y2 = 1 za dobivanje sqrt ((- 2) ^ 2 + 1 ^ 2) ili sqrt (5). Budući da ne morate pojednostaviti radikale u radu, ispada da je visina 4 / sqrt (5). Sada moramo pronaći stranu. Uzimajući u obzir da crtanje visine unutar jednakokračnog tro