Područje paralelograma je 24 centimetra, a baza paralelograma je 6 centimetara. Kolika je visina paralelograma?
4 centimetra. Površina paralelograma je osnovica xx visina 24cm ^ 2 = (6 xx visina) podrazumijeva 24/6 = visina = 4cm
Dvije suprotne strane paralelograma imaju duljinu od 3. Ako jedan kut paralelograma ima kut pi / 12 i područje paralelograma je 14, koliko dugo su ostale dvije strane?
Pretpostavljajući malo osnovne Trigonometrije ... Neka je x (zajednička) dužina svake nepoznate strane. Ako je b = 3 mjera osnove paralelograma, neka je h njegova vertikalna visina. Područje paralelograma je bh = 14 Budući da je b poznato, imamo h = 14/3. Iz osnovnog Trig, sin (pi / 12) = h / x. Možemo pronaći točnu vrijednost sinusa pomoću polu-kutne ili diferencijalne formule. sin (pi / 12) = sin (pi / 3 - pi / 4) = sin (pi / 3) cos (pi / 4) - cos (pi / 3) sin (pi / 4) = (sqrt6 - sqrt2) / 4. Dakle ... (sqrt6 - sqrt2) / 4 = h / xx (sqrt6 - sqrt2) = 4h Zamijeni vrijednost h: x (sqrt6 - sqrt2) = 4 (14/3) x (sqrt6 - sqrt2) =
Dokazati vektorski da se dijagonale romba međusobno podudaraju okomito?
Neka je ABCD romb. To znači AB = BC = CD = DA. Kao romb je paralelogram. Svojstvima paralelograma njegove dijagonale DBandAC će se međusobno podijeliti na svom mjestu presijecanja E Sada ako se strane DAandDC promatraju kao dva vektora koji djeluju na D, tada će dijagonalni DB predstavljati rezultanta njih. Tako vec (DB) = vec (DA) + vec (DC) Slično vec (CA) = vec (CB) -vec (AB) = vec (DA) -vec (DC) Tako vec (DB) * vec (CA) = vec (DA) * vec (DA) -vec (DC) * vec (DC) = absvec (DA) ^ 2-absvec (DC) ^ 2 = 0 Budući da je DA = DC, dijagonale su okomite jedna na drugu.