Broj 36 ima svojstvo da je djeljiv sa znamenkom u položaju, jer je 36 vidljivo sa 6. Broj 38 nema ovo svojstvo. Koliko brojeva između 20 i 30 ima ovo svojstvo?

Broj 36 ima svojstvo da je djeljiv sa znamenkom u položaju, jer je 36 vidljivo sa 6. Broj 38 nema ovo svojstvo. Koliko brojeva između 20 i 30 ima ovo svojstvo?
Anonim

Odgovor:

22 je djeljivo s 2.

Obrazloženje:

24 je djeljivo sa 4.

25 je djeljiv sa 5.

30 je djeljiv sa 10, ako se to računa.

To je sve - tri sigurno.

Odgovor:

Brojevi između 20 i 30 koji uključuju navedenu nekretninu su:

21, 22, 24 i 25

Obrazloženje:

Nema mnogo brojeva između 20 i 30, tako da je lako napraviti popis i testirati svaki broj da vidimo odgovara li ovom pravilu.

20 - ne može se podijeliti na nulu

21 - djeljiv sa 1

22 - djeljivo s 2

23 - nije djeljivo s 3 (i premijerno je svejedno)

24 - djeljiv sa 4

25 - djeljiv sa 5

26 - nije djeljiv sa 6

27 - nije djeljiv sa 7

(pomislite "7, 14, 21, 28 … Ups! Upravo sam propustio 27.")

28 - nije djeljivo s 8 ("8, 16, 24, 32 … Ne. No 28")

29 - nije djeljiv sa 9, a ionako je 29 premijer

30 - ništa nije djeljivo s 0

Odgovor:

Brojevi između 20 i 30 uključivo koji ispunjavaju kriterij:

21, 22, 24 i 25

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Dodatni kredit:

Opće pravilo je:

  • SVAKI broj koji završava na 1 djeljiv je s 1
  • SVAKI broj koji završava u 2 djeljiv je s 2
  • SVAKI broj koji završava na 5 djeljiv je s 5

Brojevi koji završavaju na 4 djeljivi su s 4 Ako i samo ako znamenka koja prethodi 4 je paran broj.

Ako je znamenka koja je neposredno prije konačne 4 ODD, tada broj nije djeljiv s 4.

U praksi to znači svaki drugi broj koji završava u 4 je djeljiv sa 4.

# 24 otkazati (34) 44 otkazati (54) 64 otkazati (74) … #

# 9357color (crveno) (6) 4 # je djeljiv sa 4 jer je 6 parni broj.

# 68872color (crveno) (5) 4 # nije jednako djeljiv sa 4 jer je 5 neparan broj.