Odgovor:
Perimetar je 10
Obrazloženje:
Neka visina standardizira trokut
Neka duljina strane trokuta bude u pitanju
Prema omjeru duljina stranica imamo:
Ali
Ali to je duljina samo jedne strane. Postoje tri strane tako da:
Perimetar =
Duljina svake strane jednakostraničnog trokuta povećana je za 5 inča, tako da je perimetar sada 60 inča. Kako pišete i rješavate jednadžbu kako biste pronašli izvornu duljinu svake strane jednakostraničnog trokuta?
Našao sam: 15 "u" Nazovimo izvorne duljine x: Povećanje od 5 "in" će nam dati: (x + 5) + (x + 5) + (x + 5) = 60 3 (x + 5) = 60 preraspodjela: x + 5 = 60/3 x + 5 = 20 x = 20-5 x = 15 "u"
Duljina baze jednakokračnog trokuta je 4 inča manja od duljine jedne od dvije jednake strane trokuta. Ako je opseg 32, koje su duljine svake od tri strane trokuta?
Strane su 8, 12 i 12. Možemo početi stvaranjem jednadžbe koja može predstavljati informacije koje imamo. Znamo da je ukupni perimetar 32 inča. Možemo zastupati svaku stranu s zagradama. Budući da znamo da su ostale dvije strane osim baze jednake, to možemo iskoristiti u našu korist. Naša jednadžba izgleda ovako: (x-4) + (x) + (x) = 32. To možemo reći jer je baza 4 manja od druge dvije strane, x. Kada riješimo ovu jednadžbu, dobivamo x = 12. Ako ovo uključimo za svaku stranu, dobivamo 8, 12 i 12. Kada se doda, to dolazi do perimetra 32, što znači da su naše strane u pravu.
Manji od dva slična trokuta ima opseg od 20 cm (a + b + c = 20cm). Duljine najduže strane oba trokuta su u omjeru 2: 5. Koji je opseg većeg trokuta? Molim te objasni.
Boja (bijela) (xx) 50 boja (bijela) (xx) a + b + c = 20 Neka strane većeg trokuta budu a ', b' i c '. Ako je omjer sličnosti 2/5, tada, boja (bijela) (xx) a '= 5 / 2a, boja (bijela) (xx) b' = 5 / 2b, i boja (bijela) (x) c '= 5 / 2c => a '+ b' + c '= 5/2 (a + b + c) => a' + b '+ c' = 5 / 2boja (crvena) (* 20) boja (bijela) (xxxxxxxxxxx) = 50