Odgovor:
Obrazloženje:
U redu. Imamo:
Zanemarimo
Prema pitagorejskom identitetu,
Sada kada to znamo, možemo pisati:
U stupnjevima,
Odgovor:
Obrazloženje:
S obzirom,
Pojednostavite (1 - cos theta + sin theta) / (1+ cos theta + sin theta)?
= sin (theta) / (1 + cos (theta)) (1-cos (theta) + sin (theta)) / (1 + cos (theta) + sin (theta)) = (1-cos (theta) + sin (theta)) * (1 + cos (theta) + sin (theta)) / (1 + cos (theta) + sin (theta)) ^ 2 = ((1 + sin (theta)) ^ 2-cos 2 (theta)) / (1 + cos ^ 2 (theta) + sin ^ 2 (theta) +2 sin (theta) +2 cos (theta) + 2 sin (theta) cos (theta)) = ((1+ sin (theta)) ^ 2-cos ^ 2 (theta)) / (2 + 2 sin (theta) +2 cos (theta) + 2 sin (theta) cos (theta)) = ((1 + sin (theta)) ) ^ 2-cos ^ 2 (theta)) / (2 (1 + cos (theta)) + 2 sin (theta) (1 + cos (theta)) = (1/2) ((1 + sin (theta)) ) ^ 2-cos ^ 2 (theta)) / ((1 + cos (theta)) (1 + sin (
Dokaz: - sin (7 theta) + sin (5 theta) / sin (7 theta) -sin (5 theta) =?
(sin7x + sin5x) / (sin7x-sin5x) = tan6x * cotx rarr (sin7x + sin5x) / (sin7x-sin5x) = (2sin ((7x + 5x) / 2) * cos ((7x-5x) / 2) ) / (2sin ((7x-5x) / 2) * cos ((7x + 5x) / 2) = (sin6x * cosx) / (sinx * cos6x) = (tan6x) / tanx = tan6x * cottx
Pokažite da, (1 + cos theta + i * sin theta) ^ n + (1 + cos theta - i * sin theta) ^ n = 2 ^ (n + 1) * (cos theta / 2) ^ n * cos ( n * theta / 2)?
Pogledajte dolje. Neka 1 + costheta + isintheta = r (cosalpha + isinalpha), ovdje r = sqrt ((1 + costheta) ^ 2 + sin ^ 2theta) = sqrt (2 + 2costheta) = sqrt (2 + 4cos ^ 2 (theta / 2) ) -2) = 2cos (theta / 2) i tanalpha = sintheta / (1 + costheta) == (2sin (theta / 2) cos (theta / 2)) / (2cos ^ 2 (theta / 2)) = tan (theta / 2) ili alfa = theta / 2 zatim 1 + costheta-isintheta = r (cos (-alfa) + isin (-alfa)) = r (cosalpha-isinalpha) i možemo pisati (1 + costheta + isintheta) ^ n + (1 + costheta-isintheta) ^ n koristeći DE MOivreov teorem kao r ^ n (cosnalpha + isinnalpha + cosnalpha-isinnalpha) = 2r ^ ncosnalpha = 2 * 2 ^ n