Odgovor:
Obrazloženje:
Znamo da je formula za izračunavanje površine kruga
Zamjena onoga što znamo:
Promjer kruga je 40 m, kako ćete pronaći područje kruga u smislu pi?
Područje kruga je A = pi * r ^ 2 stoga je promjer d = 2r => r = d / 2, a A = pi * (d / 2) ^ 2 => A = (400 * pi) m ^ 2
Polumjer većeg kruga je dvostruko veći od radijusa manjeg kruga. Područje krafne je 75 pi. Pronađite radijus manjeg (unutarnjeg) kruga.
Manji radijus je 5 Neka je r = radijus unutarnjeg kruga. Zatim radijus većeg kruga je 2r Iz referencije dobivamo jednadžbu za područje anulusa: A = pi (R ^ 2-r ^ 2) Zamjena 2r za R: A = pi ((2r) ^ 2- r ^ 2) Pojednostavite: A = pi ((4r ^ 2- r ^ 2) A = 3pir ^ 2 Zamjena u danom području: 75pi = 3pir ^ 2 Podijelite obje strane s 3pi: 25 = r ^ 2 r = 5
Dva kruga koji imaju jednak radijus r_1 i dodiruju lon na istoj strani l su na udaljenosti od x jedni od drugih. Treći krug radijusa r_2 dodiruje dva kruga. Kako ćemo pronaći visinu trećeg kruga od l?
Pogledaj ispod. Pretpostavimo da je x udaljenost između perimetara i pretpostavimo da 2 (r_1 + r_2) gt x + 2r_1 imamo h = sqrt ((r_1 + r_2) ^ 2- (r_1 + x / 2) ^ 2) + r_1-r_2 h je udaljenost između l i oboda C_2