Odgovor:
Domena je
Raspon je
Obrazloženje:
Za domenu je ono što je ispod znaka kvadratnog korijena
Stoga,
pustiti
Možemo napraviti grafikon znakova
Stoga
Neka,
kokoš,
Rješenja ove kvadratne jednadžbe su kada je diskriminantna
Tako,
pustiti
Gradimo znakovni grafikon
Stoga,
To nije moguće tijekom cijelog intervala, tako da je raspon
graf {sqrt (4x-x ^ 2) -10, 10, -5, 5}
Neka je domena f (x) [-2,3], a raspon je [0,6]. Što je domena i raspon f (-x)?
Domena je interval [-3, 2]. Raspon je interval [0, 6]. Upravo tako, to nije funkcija, jer je njezina domena samo broj -2.3, dok je njezin raspon interval. No, pod pretpostavkom da je to samo tipografska pogreška, a stvarna domena je interval [-2, 3], to je kako slijedi: Neka je g (x) = f (-x). Budući da f zahtijeva da svoju neovisnu varijablu uzima samo u intervalu [-2, 3], -x (negativno x) mora biti unutar [-3, 2], što je domena od g. Budući da g dobiva svoju vrijednost kroz funkciju f, njezin raspon ostaje isti, bez obzira što koristimo kao nezavisnu varijablu.
Što je (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt) (3) sqrt (5))?
2/7 Primamo, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5) -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) (2sqrt3 + sqrt5) (2sqrt3 + sqrt5) / ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (poništi (2sqrt15) -5 + 2 * 3kkazati (-sqrt15) - otkazati (2sqrt15) -5 + 2 * 3 + otkazati (sqrt15)) / (12-5) = ( Imajte na umu da, ako su u nazivnicima (sqrt3 + sqrt (3 + sqrt5)) i (sqrt3 + sqrt (3-sqrt5)), odgovor će biti promijenjen.
Ako je f (x) = 3x ^ 2 i g (x) = (x-9) / (x + 1), i x! = - 1, što bi f (g (x)) jednako? g (f (x))? f ^ 1 (x)? Što bi domena, raspon i nula za f (x) bili? Kakva bi bila domena, raspon i nula za g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = root () (x / 3) D_f = {x u RR}, R_f = {f (x) u RR; f (x)> = 0} D_g = {x u RR; x! = - 1}, R_g = {g (x) u RR; g (x)! = 1}