Odgovor:
Obrazloženje:
Duljina lacrosse polja je 15 jardi manje od dvostruke širine, a perimetar je 330 jardi. Obrambeno područje polja je 3/20 ukupne površine polja. Kako ste pronašli obrambeno područje lacrosse polja?
Obrambena zona je 945 četvornih metara. Da biste riješili ovaj problem, prvo trebate pronaći područje polja (pravokutnik) koje se može izraziti kao A = L * W. Za dobivanje duljine i širine potrebno je koristiti formulu za Perimetar pravokutnika: P = 2L + 2W. Poznajemo perimetar i znamo odnos dužine i širine tako da možemo nadomjestiti ono što znamo u formulu za perimetar pravokutnika: 330 = (2 * W) + (2 * (2W - 15)), a zatim riješiti za W: 330 = 2W + 4W - 30 360 = 6W W = 60 Također znamo: L = 2W - 15 tako da zamjena daje: L = 2 * 60 - 15 ili L = 120 - 15 ili L = 105 Sada kada smo znaju Dužina i širina koje možemo odrediti
Duljina pravokutnog polja je 2 m veća od tri puta širine. Površina polja je 1496 m2. Koje su dimenzije polja?
Dužina i širina polja su 68 odnosno 22 metra. Neka je širina pravokutnog polja x metar, a duljina polja je 3x + 2 metra. Područje polja je A = x (3x + 2) = 1496 m²: .3x ^ 2 + 2x -1496 = 0 Uspoređujući sa standardnom kvadratnom jednadžbom ax ^ 2 + bx + c = 0; a = 3, b = 2, c = -1496 Diskriminantni D = b ^ 2-4ac; ili D = 4 + 4 * 3 * 1496 = 17956 Kvadratna formula: x = (-b + -sqrtD) / (2a) ili x = (-2 + -sqrt 17956) / 6 = (-2 + -134) / 6 :. x = 132/6 = 22 ili x = -136 / 6 -22.66. Širina ne može biti negativna, pa x = 22 m i 3x + 2 = 66 + 2 = 68 m. Stoga duljina i širina pravokutnog polja iznosi 68 odnosno 22 metra. [Ans]
Volumen kocke se povećava brzinom od 20 kubnih centimetara u sekundi. Koliko brzo, u kvadratnim centimetrima u sekundi, površina kocke raste u trenutku kada je svaki rub kocke dugačak 10 centimetara?
Uzmite u obzir da se rub kocke mijenja s vremenom tako da je funkcija vremena l (t); tako: