Odgovor:
Obrazloženje:
pustiti
Po pitanju, imamo
Sada, SLUČAJ I:
SLUČAJ II:
Dakle, kao što se ovdje formiraju dva slučaja; par brojeva može biti oboje (13, 15) ili (1, 3).
Produkt dva uzastopna parna broja je 24. Pronađite dva cijela broja. Odgovorite u obliku uparenih točaka s najnižom od dva cijela broja. Odgovor?
Dva uzastopna jednaka broja: (4,6) ili (-6, -4) Let, boja (crvena) (n i n-2 su dva uzastopna jednaka broja, gdje je boja (crvena) (n inZZ Proizvod n i n-2 je 24 tj. n (n-2) = 24 => n ^ 2-2n-24 = 0 Sada, [(-6) + 4 = -2 i (-6) xx4 = -24]: .n ^ 2-6n + 4n-24 = 0: .n (n-6) +4 (n-6) = 0:. (N-6) (n + 4) = 0: .n-6 = 0 ili n + 4 = 0 ... do [n inZZ] => boja (crvena) (n = 6 ili n = -4 (i) boja (crvena) (n = 6) => boja (crvena) (n-2) = 6-2 = boja (crvena) (4) Dakle, dva uzastopna parna broja: (4,6) (ii)) boja (crvena) (n = -4) => boja (crvena) (n-2) = -4-2 = boja (crvena) (- 6) Dakle, dva uzastopna parna broja: (- 6, -4)
Produkt dva uzastopna neparna broja je 1 manji od četiri puta njihov zbroj. Koja su dva cijela broja?
Pokušao sam ovo: Nazovite dva uzastopna neparna broja: 2n + 1 i 2n + 3 imamo: (2n + 1) (2n + 3) = 4 [(2n + 1) + (2n + 3)] - 1 4n ^ 2 + 6n + 2n + 3 = 4 (4n + 4) -1 4n ^ 2-8n-12 = 0 Koristimo Qadratic Formula za dobivanje n: n_ (1,2) = (8 + -sqrt (64+) 192)) / 8 = (8 + -16) / 8 n_1 = 3 n_2 = -1 Dakle, naši brojevi mogu biti: 2n_1 + 1 = 7 i 2n_1 + 3 = 9 ili: 2n_2 + 1 = -1 i 2n_2 + 3 = 1
Tri puta veći od dva uzastopna neparna broja je pet manje od četiri puta manji. Što su ta dva broja?
Dva broja su 11 i 13 Neka dva uzastopna neparna cijela broja budu x i (x + 2). Dakle x je manji i x + 2 je veći. S obzirom da: 3 (x + 2) = 4x - 5 3x + 6 = 4x - 5 3x-4x = -5 -6 -x = -11 x = 11 i x + 2 = 11 +2 = 13 Stoga dva broja su 11 i 13