Odgovor:
# = -1/56 ln aps (x + 1) +71/7 ln abs (x-6) -97/8 ln abs (x-7) + C #
Obrazloženje:
#int (1-2x ^ 2) / ((x + 1) (x-6) (x-7)) dx #
# = int (-1/56 (1 / (x + 1)) + 71/7 (1 / (x-6)) - 97/8 (1 / (x-7))) dx #
# = -1/56 ln aps (x + 1) +71/7 ln abs (x-6) -97/8 ln abs (x-7) + C #
Odakle dolaze ti koeficijenti?
# (1-2x ^ 2) / ((x + 1) (x-6) (x-7)) = a / (x + 1) + b / (x-6) + c / (x-7) #
Možemo izračunati
#a = (1-2 (boja (plava) (- 1)) ^ 2) / (boja (crvena) (poništi (boja (crna) ((((boja (plava) (- 1)) + 1)))) ((boja (plava) (- 1)) - 6) ((boja (plava) (- 1)) - 7)) = (-1) / ((- 7) (- 8)) = -1 / 56 #
#b = (1-2 (boja (plava) (6)) ^ 2) / (((boja (plava) (6)) + 1) boja (crvena) (poništi (boja (crna) ((((boja (plava) (6)) - 6)))) ((boja (plava) (6)) - 7)) = (-71) / ((7) (- 1)) = 71/7 #
#c = (1-2 (boja (plava) (7)) ^ 2) / (((boja (plava) (7)) + 1) (boja (plava) (7)) - 6) (crvena)) (poništi (boja (crna) (((boja (plava) (7)) - 7))))) = (-97) / ((8) (1)) = -97 / 8 #
Odgovor je već postojao