Odgovor:
Domena:
Obrazloženje:
Od samog početka znate da domena funkcije mora sadržavati samo vrijednosti od
Drugim riječima, iz domene funkcije morate izuzeti bilo koju vrijednost
#x - 3x ^ 2 <0 #
Izraz ispod kvadratnog korijena može se faktorizirati
#x - 3x ^ 2 = x * (1 - 3x) #
Učinite ovaj izraz jednak nuli kako biste pronašli vrijednosti od
#x * (1 - 3x) = 0 podrazumijeva {(x = 0), (x = 1/3):} #
Dakle, da bi ovaj izraz bio pozitivan, morate imati
Sada, za
# {(x <0), (1 - 3x> 0):} podrazumijeva x * (1-3x) <0 #
Isto tako, za
# {(x> 0), (1 - 3x> 0):} podrazumijeva x * (1-3x) <0 #
To znači da su jedine vrijednosti
Bilo koja druga vrijednost
graf {sqrt (x-3x ^ 2) -0.466, 0.866, -0.289, 0.377}
Domena f (x) je skup svih realnih vrijednosti osim 7, a domena g (x) je skup svih realnih vrijednosti, osim -3. Što je domena (g * f) (x)?
Svi stvarni brojevi osim 7 i -3 kada pomnožite dvije funkcije, što radimo? uzimamo vrijednost f (x) i pomnožimo je s vrijednošću g (x), gdje x mora biti ista. Međutim, obje funkcije imaju ograničenja, 7 i -3, tako da proizvod dvije funkcije mora imati * oba * ograničenja. Obično kada se radi o funkcijama, ako su prethodne funkcije (f (x) i g (x)) imale ograničenja, one se uvijek uzimaju kao dio novog ograničenja nove funkcije ili njihovog rada. To također možete vizualizirati izradom dvije racionalne funkcije s različitim ograničenim vrijednostima, zatim ih pomnožiti i vidjeti gdje će biti ograničena os.
Što je (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt) (3) sqrt (5))?
2/7 Primamo, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5) -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) (2sqrt3 + sqrt5) (2sqrt3 + sqrt5) / ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (poništi (2sqrt15) -5 + 2 * 3kkazati (-sqrt15) - otkazati (2sqrt15) -5 + 2 * 3 + otkazati (sqrt15)) / (12-5) = ( Imajte na umu da, ako su u nazivnicima (sqrt3 + sqrt (3 + sqrt5)) i (sqrt3 + sqrt (3-sqrt5)), odgovor će biti promijenjen.
Što je domena kombinirane funkcije h (x) = f (x) - g (x), ako je domena f (x) = (4,4,5) i domena g (x) [4, 4,5] )?
Domena je D_ {f-g} = (4,4,5). Vidi objašnjenje. (f-g) (x) može se izračunati samo za one x, za koje su definirani i f i g. Tako možemo napisati: D_ {f-g} = D_fnnD_g Ovdje imamo D_ {f-g} = (4,4,5) nn [4,4,5) = (4,4,5)