Odgovor:
Prvo pronađite nagib izvorne linije.
Obrazloženje:
m =
m =
m =
Nagib linije koja je okomita na tu liniju bila bi negativna recipročna. Da biste to pronašli, invertirajte brojnik i nazivnik i pomnožite s -1, što daje m =
Dakle, nagib bilo koje linije okomice na pravac koji prolazi kroz (-9, 8) i (0,0) je
Koji je nagib bilo koje linije okomice na pravac koji prolazi kroz (0,0) i (-1,1)?
1 je nagib bilo kojeg pravca okomitog na pravac Nagib je uzlazio preko staze, (y_2 -y_1) / (x_2-x_1). Nagib okomit na bilo koju liniju negativan je recipročan. Nagib te linije je negativan tako da je okomita na nju 1.
Koji je nagib bilo koje linije okomice na pravac koji prolazi kroz (0,6) i (18,4)?
Nagib bilo kojeg pravca okomitog na pravac koji prolazi kroz (0,6) i (18,4) je 9 Nagib pravca koji prolazi kroz (0,6) i (18,4) je m_1 = (y_2-y_1) / (x_2-x_1) = (4-6) / (18-0) = (-2) / 18 = -1 / 9 Produkt nagiba okomitih linija je m_1 * m_2 = -1: .m_2 = -1 / m_1 = -1 / (- 1/9) = 9. Stoga nagib bilo koje linije okomice na pravac koji prolazi kroz (0,6) i (18,4) je 9 [Ans]
Koji je nagib bilo koje linije okomice na pravac koji prolazi kroz (11,12) i (-15, -2)?
M_2 = -13 / 7 "nagib prolaza prolaza (11,12) i (-15, -2) je:" m_1 = 7/13 m_2: "nagib linije koji je okomit na pravac koji prolazi A, B" m_1 * m_2 = -1 7/13 * m_2 = -1 m_2 = -13 / 7